public class Regression extends Object
| Constructor and Description |
|---|
Regression(double[] t,
double[][] y)
constructor for time series with unknown measurement errors.
|
Regression(double[] t,
double[][] y,
double[][] deltaY)
constructor for time series with known measurement errors.
|
| Modifier and Type | Method and Description |
|---|---|
void |
computeCoefficients(int rMax)
polynomial regression for given data points
|
double[] |
getT()
Returns the t-values of the data points (t, y).
|
double[][] |
getY()
Returns the array of y-values of the data points (t, y).
|
double[][] |
polynomial(double t,
double chi2,
double p,
int nr,
int nf)
computes the value eta(t) on the regression curve at t and its distance from the confidence limits,
if the measurement errors are unknown.
|
double[][] |
polynomial(double t,
double p,
int nr)
computes the value on the regression curve at t and its distance from the confidence limits,
if the measurement errors are known.
|
double[] |
polynomial(double t,
int nr)
computes the value on the regression curve at t.
|
public Regression(double[] t,
double[][] y)
t - the t-values of the data points (t, y)y - an array of the y-values of the data points (t, y)public Regression(double[] t,
double[][] y,
double[][] deltaY)
t - the t-values of the data points (t, y)y - an array of the y-values of the data points (t, y)deltaY - the measurement errorspublic double[] getT()
public double[][] getY()
public void computeCoefficients(int rMax)
y(t) = x0 f0(t) + x1 f1(t) + ... + xr fr(t),
rMax - maximal number of parameterspublic double[] polynomial(double t,
int nr)
t - value of the control variablenr - the degree of the regression polynomialpublic double[][] polynomial(double t,
double p,
int nr)
t - value of the control variablep - probability of the confidence limitnr - number of parameters r in the polynomialpublic double[][] polynomial(double t,
double chi2,
double p,
int nr,
int nf)
t - value of the control variablechi2 - value of the least square fit for adjusting a polynomial of degree r-1p - probability of the confidence limitnr - number of parameters r in the polynomialnf - number f = N - r of degrees of freedom