
Math. Nachr. 179 (1996), 27-45

The evolution of the Weyl and Maxwell fields in curved space-
times

By Andreas de Vries of Bochum

(Received July 13, 1994, revised version March 17, 1995)

Abstract. The covariant Weyl (spin s = 1
2 ) and Maxwell (s = 1) equations in certain local

charts (U , ϕ̃) of a space-time (M, g) are considered. It is shown that the condition g00(x) > 0 ∀x ∈ U
is necessary and sufficient to rewrite them in a unified manner as evolution equations ∂tφ = L(s)φ.

Here L(s) is a linear first order differential operator on the pre-Hilbert space
(
C∞0 (Ut, C 2s+1), 〈·, ·〉

)
,

where Ut ⊂ IR3 is the image of the coordinate map of the spacelike hypersurface t = const, and

〈φ, ψ〉 =
∫

Ut
φ!Qψ d(3)x with a suitable Hermitian n × n-matrix Q = Q(t, x). The total energy of

the spinor field φ with respect to Ut is then simply given by E = 〈φ, φ〉. In this way inequalities for the

energy change rate with respect to time, ∂t‖φ‖2 = 2 Re 〈φ, L(s)φ〉, are obtained. As an application,

the Kerr-Newman black hole is studied, yielding quantitative estimates for the energy change rate.

These estimates especially confirm the energy conservation of the Weyl field and the well-known

superradiance of electromagnetic waves.

1. Introduction

Energy in general relativity is based on a local concept. It is a weaker notion than one
is used to in special relativity, where total energy and total momentum are considered,
in essence, as integrals of energy-momentum tensor densities over the hypersurfaces
t = const. These integrals yield a 4-vector that transforms by the Lorentz group under
changes of reference frames in Minkowski space-time.

Here we generalize this concept. We suppose a space-time (M, g) with a foliation
{Lt∈I}, I ⊂ IR, where each leaf Lt is a spacelike hypersurface. Just as in special
relativity, we regard the integral E =

∫
Lt

TijN iN jd(3)x as the total energy with respect
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to Lt at time t ∈ I, where Tij is the energy-momentum tensor of the considered matter
and N j the unit normal to Lt.

For quantitative calculations it is necessary to use coordinates. Thus we restrict our-
selves to a suitable open subset U ⊂M with coordinates (x0, ..., x3) : U → U ⊂ IR4,
x0 = ct, c the speed of light, where the hypersurfaces {t = const} are Lt ∩U . One im-
portant result is the fact that a necessary and sufficient criterion for the hypersurfaces
t = const to be spacelike is the positiveness of the metric tensor component g00,

g00(x) > 0 for each x ∈ U .(1.1)

This condition is obviously true in Minkowski space-time, but surprisingly it is also
valid in the whole outer space of a rotating black hole in Boyer-Lindquist coordinates,
especially in the ergosphere (where g00 < 0 !). In this way, using a chart compatible
with the foliation and obeying the condition g00 > 0, we rewrite the covariant Weyl
and Maxwell equations on M as evolution equations. These equations allow us to
calculate bounds for the rate of change of the energy E during the progress of time t,
depending only on the components of the respective differential equations. Whereas
for the flat case one expects energy conservation for test fields, i.e. an isometry of
the evolution for the energy norm (i.e. ∂E/∂t = 0), the interactions with a general
gravitational field may result in dissipation, or amplification, of energy. These effects
will be studied quantitatively.

This article is organized as follows: After presenting an important elementary prop-
erty of Newman-Penrose tetrads in section 2, we give some essential implications of
condition (1.1), g00 > 0, in section 3. Section 4 collects mathematical properties of
general linear differential operators with matrix-valued coefficients, whereas section 5
provides a physical discussion of the definition of the total energy E of a wave field
with respect to the hypersurface Ut = {(x1, x2, x3)}. Essentially, the contravariant
component T 00, the projection of the energy-momentum tensor Tij on the vector field
Xj = g0j , T 00 = TijXiXj , is the energy density with respect to the hypersurface
Ut, because Xj is everywhere orthogonal to Ut by lemma 3.1 below. Besides, T 00

is in general the only component of Tij that is always positive on Ut; for example,
T 0

0 = T 0
j (∂t)j or T00 for the Maxwell field in the ergosphere of the Kerr-Newman

space-time are negative, as is shown in section 7. The unit normal to Ut being given
by N j = Xj/

√
g00, we define E =

∫
Ut

T 00/g00d(3)x as the total energy of φ with re-
spect to the hypersurface Ut. Of course, this quantity is hypersurface-dependent. But
paying this price, we gain the possibility of rewriting the Weyl and Maxwell equations
as evolution equations, ∂tφ = L(s)φ, where s = 1

2 for the Weyl field, and s = 1 for the
Maxwell field, as is done in section 6. The originally covariant equations, once trans-
ported into IR4 by the coordinate map, can now be treated as usual linear differential
equations in U ⊂ IR(t)×IR3

(x). Here it is standard to calculate changes of the energy E
with respect to time, ∂tE = 2 Re 〈φ, L(s)φ〉, as long as it is a norm square, i.e. E ≥ 0.

We emphasize that the energy change rates are independent of the special definition
of the total energy E (if only it is positive), because they depend only on the coefficients
of the differential equations. This may be recognized noticing the central inequalities
of this article, (6.10) and (6.21).

Finally, the restriction g00 > 0 is general enough to include such physically important
cases like the outer space of a rotating charged black hole, as considered in section 7,
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or the Robertson-Walker universes, cf. de Vries (1994), for which the corresponding
charts are even global (up to a set of measure zero).

To summarize, the criterion g00 > 0 does not only enable us to gain evolution
equations for the Weyl and Maxwell fields, but also guarantees that the total energy
with respect to Ut is positive. Hence there is a natural construction of a pre-Hilbert
space

(
C∞0 (Ut,C 2s), 〈·, ·〉

)
of the spinor functions. In this way standard functional

analytic methods can be applied to general relativity, yielding new quantitative results
in a rather simple manner.

2. Newman-Penrose tetrads

In the sequel we consider space-times (M, g) with a Lorentz metric of signature
−2, e.g. Hawking and Ellis (1973). Moreover we use the convention to sum over
indices occuring twice, counting Latin indices from 0 to 3 and Greek ones from 1 to
3, cf. Landau and Lifschitz (1975).

Let be (M, g) a general space-time, and {l,n,m, m̄} a Newman-Penrose tetrad, i.e.
a collection of two real future directed null vector fields, l and n, and a complex null
vector field m with its complex conjugate m̄, satisfying the orthonormality relations

lj l
j = njn

j = mjm
j = m̄jm̄

j = 0,

ljn
j = −mjm̄

j = 1,

ljm
j = ljm̄

j = njm
j = njm̄

j = 0.

We mention the relation

gij = linj + nilj −mim̄j − m̄ imj ,(2.1)

cf. Newman and Penrose (1962). Let e(a)
j and e(a)j for a = 1, 2, 3, 4 be given by

e(1)
j = e(2)j = lj , e(2)

j = e(1)j = nj ,

e(3)
j = −e(4)j = mj , e(4)

j = −e(3)j = m̄j .
(2.2)

Relating the Ricci rotation coefficients of the Newman-Penrose tetrad,

γabc = e(a)
ie(b)i; je(c)

j ,

to the spin coefficients we get the equations

κ = γ311, % = γ314, ε = 1
2 (γ211 + γ341),

σ = γ313, µ = γ243, γ = 1
2 (γ212 + γ342),

λ = γ244, τ = γ312, α = 1
2 (γ214 + γ344),

ν = γ242, π = γ241, β = 1
2 (γ213 + γ343),

(2.3)
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e.g. Chandrasekhar (1983) or Newman and Penrose (1962).

Lemma 2.1. For a Newman-Penrose tetrad it follows

∇j l
j = 2Re(ε− %), ∇jn

j = 2 Re(µ− γ), ∇jm
j = β − τ + π̄ − ᾱ.(2.4)

P r o o f. By γ1a2 + γ2a1 − γ3a4 − γ4a3 = (linj + nilj −mim̄j − m̄imj)∇je(a)i and by
(2.1) we see

∇je(a)
j = γ1a2 + γ2a1 − γ3a4 − γ4a3,(2.5)

From the antisymmetry of the Ricci rotation coefficients in the first two indices, γabc =
−γbac, (e.g. Chandrasekhar 1983, or Landau & Lifschitz 1975) it follows γaab =
0, and hence with ε + ε̄ = γ211,

ε + ε̄− %− %̄ = γ211 − γ314 − γ413 = γ111 + γ211 − γ314 − γ413.

Setting a = 1 in (2.5) we receive the first equation in (2.4). Similarly we get γ+γ̄ = γ212

and β − ᾱ = γ343, i.e. with a = 2 and a = 3 the last two equations in (2.4). !

3. The condition g00 > 0

We consider some properties of the components of the metric tensor in a general local
coordinate system of an arbitrary space-time. In the sequel we denote ∂j = ∂/∂xj for
j = 0, 1, 2, 3.

Due to the fundamental relation gijgjk = δi
k we have

gαβgβγ + g0αg0γ = δα
γ ,(3.1)

gαβg0β + g0αg00 = 0,(3.2)
g0βg0β + g00g

00 = 1(3.3)

(α, β, γ = 1, 2, 3). Especially
gαig

0i = 0.(3.4)

This means geometrically that in every space-time, for each α = 1, 2, 3, the two four-
vectors X and ∂α, with the components Xi = g0i and ∂α

i = δα
i, are orthogonal to

each other with respect to the metric g. By (3.2) we have −gαβg0β = g0αg00, thus
summed over α

−gαβg0αg0β = g0αg0αg00.(3.5)

Lemma 3.1. For each x ∈M we have the following assertions:
(a) The 3× 3-matrix

(
gαβ(x)

)
is negative definite if and only if g00(x) > 0.

(b) If g00(x) > 0, then either g0α(x) = g0α(x) = 0, or g0α(x)g0α(x) > 0.

P r o o f. (a) (gαβ) is negative definite ⇐⇒ span(∂1, ∂2, ∂3) is spacelike

⇐⇒
(3.4)

X given by Xi = g0i is timelike ⇐⇒ g(X,X) = gijg0ig0j = g00 > 0.
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(b) By (a) gαβ is negative definite. If g0αg0α -= 0, then g0αg0α > 0 by (3.5); if else
g0αg0α = 0, then g0α = 0 by (3.5), and hence by (3.2) g0α = 0. !

Lemma 3.2. Let U be connected and (U , ϕ̃) be a chart, such that g00 > 0 in U , and
let {l, n, m, m̄} be a Newman-Penrose tetrad. Furthermore let the vector field ∂0 be
timelike and future directed in a special point x$ ∈ U . Then in each point of U

l0, n0, l0, n0 > 0.(3.6)

P r o o f. Because ∂0 is timelike in x$, we have g00(x$) > 0. By (2.1) we know
g00 = 2(l0n0 − m0m̄ 0), and hence l0(x$)n0(x$) > 0. But being continuous on the
connected set U , both l0 and n0 have the same sign and do not change it anywhere.
Now, the vector field Xj = g0j is timelike by (3.4) and lemma 3.1, and future directed
in x$ by gx!

(∂0,X) = g00g00 > 0. By definition, l and n are future directed, hence
gx!

(X, l) = g0j(x$)lj(x$) = l0(x$) > 0, and analogously n0(x$) > 0. l0 and n0 do
not change the sign on U , and thus we have in general l0(x), n0(x) > 0 ∀x ∈ U .
Because l and n are lightlike, we conclude by the negative definiteness l0l0 = −lαlα =
−gαβlαlβ > 0 and n0n0 = −gαβnαnβ > 0. !

4. Linear operators in space-times

For a general space-time (M, g) we consider a timelike future directed vector field
X on M, g(X,X) > 0. Let U ⊂ M be an open connected subset such that there
exists an onto C∞-function f : U → I ⊂ IR whose gradient is the vector field X divided
by c, i.e. cdf = g(X, ·), (Choquet-Bruhat et al. 1982, pp. 285). By cdf(X) =
g(X, X) > 0, f has no critical points. Thus for t ∈ I the level surfaces Lt = {x ∈
U | f(x) = t} are hypersurfaces of U . They are spacelike, because the gradient of f
is timelike in each point x ∈ U .

⋃
t∈I Lt ∩ U is a foliation of U , Tondeur (1988).

Then we call f(x) the time in x ∈ U . We mention that f can be extended to a
global function f : M→ IR, iff the stable causality condition holds on the space-time
(Hawking & Ellis 1973, pp. 198). For each t ∈ I we assume Lt ∩ U connected, and
globally parametrized by ϕ̃(x) = (ct,x) = (ct, x1, x2, x3). This means that (U , ϕ̃) is
a local coordinate system of M. Let now U := ϕ̃(U) be the image of the coordinate
map, and

Ut := {x ∈ IR3 | (ct,x) ∈ ϕ̃(U)} ∀t ∈ I.(4.1)

We have Ut
∼= Lt ∩U , as well as

⋃
t∈I{ct}×Ut

∼= ϕ̃(U). By lemma 3.1 (a) we see that
Ut is spacelike, if and only if (1.1) is valid.

For n ∈ IN we consider the pre-Hilbert space
(
C∞0 (Ut,C n), 〈·, ·〉

)
of the smooth func-

tions φ : Ut → C n with compact support and the scalar product 〈·, ·〉 : C∞0 (Ut,C n)×
C∞0 (Ut,C n) → C ,

〈φ,ψ〉 =
∫

Ut

φ$Qψ
√
|g| dx.(4.2)

Here g = det gij , and Q = Q(t,x) is a Hermitian positive definite n × n-matrix
with C0-entries, denoted Q = (qij)i,j=1,...,n. Let furthermore H = Ht = L2(Ut)n be
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the completion of C∞0 (Ut,C n) with respect to the norm ‖ · ‖ induced by the scalar
product 〈·, ·〉, cf. Chernoff (1973). We abbreviate for notational convenience

d(3)x =
√
|g| dx.(4.3)

We denote by In the n × n identity matrix, and 〈φ,ψ〉In =
∫

Ut
φ$ψ d(3)x. Notice

〈φ,ψ〉 = 〈φ, Qψ〉In .

Definition 4.1. For functions φ,ψ : U → C n we define

{|φ,ψ|}±(t,x) :=
n∑

i,j=1

(φ̄iqijψj)±(t, x),(4.4)

where f+(t,x) = max
(
0,Re f(t, x)

)
and f−(t,x) = min

(
0,Re f(t, x)

)
for a function

f : U → C . It follows Re 〈φ,ψ〉 =
∫

({|φ,ψ|}+ + {|φ,ψ|}−) d(3)x.

Lemma 4.2. Consider t ∈ I as given. Let H = H(t,x) be a diagonalizable complex
n × n-matrix with real eigenvalues λ1,...,λn ∈ C0(U, IR), and denote λmin(t, x) =
minλi(t,x) and λmax(t,x) = max λi(t, x) in each point (t,x) ∈ U . For φ,ψ ∈ H we
then have the pointwise inequalities

λmin{|φ,ψ|}++ λmax{|φ,ψ|}− ≤ Re (φ$QHψ)

≤ λmin{|φ,ψ|}−+ λmax{|φ,ψ|}+.
(4.5)

If {|φ,ψ|}± = {|φ′,ψ′|}± for φ,ψ, φ′,ψ′ ∈ H, then

{|φ,Hψ|}± = {|φ′,Hψ′|}±.(4.6)

P r o o f. Let S be a unitary matrix such that D := SHS$ is diagonal. Defining
η := Q−1SQφ, χ := Sψ we have η$Qχ = φ$Qψ and η$QDχ = φ$QHψ. Because D is
diagonal with entries λj , we see with Q = (qij)i,j that

Re (η$QDχ) =
n∑

j=1

λj

n∑

i=1

Re (η̄iqijχj).

Hence Re(η$QDχ) =
∑

j λj
∑

i(η̄iqijχj)+ +
∑

j λj
∑

i(η̄iqijχj)−. By

λmin{|η, χ|}+ ≤ ∑
λj

∑
(η̄iqijχj)+ ≤ λmax{|η, χ|}+,

λmax{|η, χ|}− ≤ ∑
λj

∑
(η̄iqijχj)− ≤ λmin{|η, χ|}−,

(4.5) is proved. Suppose now {|φ,ψ|}± = {|φ′,ψ′|}±, and let η′ and χ′ be given by
φ′ and ψ′ analogously as η and χ above. Then we have {|φ,ψ|}± − {|φ′,ψ′|}± =∑

(η̄iqijχj)± − (η̄′iqijχ′j)± = 0, thus (η̄iqijχj)± − (η̄′iqijχ′j)± = 0 (no summation!), i.e.
{|φ,Hψ|}± − {|φ′,Hψ′|}± =

∑
λj

(
(η̄iqijχj)± − (η̄′iqijχ′j)±

)
= 0. !

As a simple consequence of (4.5) for ψ = φ we have, by {|φ,φ|}+ = φ$Qφ > 0,

λmin φ$Qφ ≤ Re (φ$QHφ) ≤ λmax φ$Qφ.(4.7)



A. de Vries, The evolution of the Weyl and Maxwell fields in curved space-times 33

Lemma 4.3. For ν ∈ {1, 2, 3} let Mν = Mν(t,x) be three Hermitian n× n-matrices,
and let B : C∞0 (Ut,C n) → C∞0 (Ut,C n) be the differential operator B = −Mν∂ν .
Then for φ ∈ C∞0 (Ut,C n) we have (cf. (4.3))

2 Re 〈φ, Bφ〉In =
∫

Ut

φ$ 1√
|g|

∂ν

(√
|g|Mν

)
φd(3)x.

P r o o f. We define the vector field Fφ : Ut → IR3 with the components F ν
φ = φ$ ·Mν ·φ.

The three matrices Mν being Hermitian, F ν
φ is real. We consider d(3)x as the 3-form√

|g|dx1 ∧ dx2 ∧ dx3 on the open subset Ut ⊂ IR3. For the dual ∗Fφ we then have
d ∗ Fφ = ∂ν(

√
|g| F ν

φ ) dx1∧ dx2∧ dx3, e.g. Choquet-Bruhat et al. (1982). By
Stokes’ theorem we have

∫
Ut

d ∗ Fφ =
∫

∂Ut
∗Fφ. But the boundary integral vanishes

(supp φ ⊂⊂ Ut), and hence with

∂ν(
√
|g|F ν

φ ) =
√
|g| (∂νφ$Mνφ + φ$Mν∂νφ) + φ$∂ν(

√
|g|Mν)φ

it follows
∫

Ut

(
∂νφ$Mνφ + φ$Mν∂νφ

)
d(3)x = −

∫

Ut

φ$ 1√
|g|

∂ν(
√
|g|Mν)φ d(3)x.

2 Re 〈φ, Bφ〉In = −
∫

(∂νφ$Mνφ + φ$Mν∂νφ)d(3)x completes the proof. !

Lemma 4.4. Let H be a complex Hilbert space, and let A1 and A2 be two linear
operators with domains D(A1), D(A2) ⊂ H such that 〈φ, A1φ〉 = 〈φ, A2φ〉 for each
φ ∈ D(A1) ∩ D(A2). Then A1φ = A2φ for each φ ∈ D(A1) ∩ D(A2). If moreover
D(A1) ∩D(A2) is dense in H, then A1 = A2.

P r o o f. Define A := A1−A2 with domain D(A) = D(A1)∩D(A2). Then for φ ∈ D(A)
we have 〈φ, A1φ〉 = 〈φ, A2φ〉 ⇔ 〈φ, Aφ〉 = 0. q : D(A) → IR defined by q(φ) = 〈φ, Aφ〉
is a quadratic form on D(A) vanishing identically, q(φ) ≡ 0. The sesquilinear form
s : D(A)×D(A) → C , s(ψ, φ) = 〈ψ, Aφ〉 also vanishes identically by the polarisation
identity, because D(A) is a complex vector space, e.g. Weidmann (1976). Hence
〈ψ, Aφ〉 ≡ 0 ∀φ,ψ ∈ D(A). Thus Aφ = 0 for φ ∈ D(A). If D(A) is dense in H, then
A = 0. !

Remark. In the proof it is essential that D(A1) ∩D(A2) is a complex vector space,
because in real spaces there do exist linear operators A (“rotations by ±π

2 ”) such
that the associated quadratic form vanishes identically, q(φ) = 〈φ, Aφ〉 = 0, but the
sesquilinear form s(φ,ψ) = 〈φ, Aψ〉 does not.

Theorem 4.5. Let (U , ϕ̃) be a local chart of a space-time (M, g) satisfying (1.1), and
let be U and Ut be given as above, eq. (4.1). Moreover we consider the matrix-valued
C1-maps M j , Z : U → M(n× n, C), j = 0, 1, 2, 3, and assume for each (t,x) ∈ U the
following:
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(i) M0(t,x) is Hermitian with positive eigenvalues, and λmax(t,x) is the maximal
eigenvalue of the inverse (M0)−1.

(ii) The three matrices (Mν)(t, x), ν = 1, 2, 3, are Hermitian.

(iii) µmin and µmax are the minimal and maximal eigenvalue, respectively, of the
n× n-matrix

H = H(t, x) :=
1√
|g|

∂ν

(√
|g|Mν

)
− Z − Z$.(4.8)

Then, for the first order differential operator L : C∞0 (Ut,C n) → C∞0 (Ut,C n),

L = −
(
M0(t,x)

)−1 (
Mν(t, x)∂ν + Z(t, x)

)
,(4.9)

and for φ ∈ C∞0 (Ut,C n) we have

2 Re 〈φ, Lφ〉 = Re〈φ, (M0)−1Hφ〉,(4.10)

and the inequalities

〈φ,λmaxµ
−
minφ〉 ≤ 2 Re 〈φ, Lφ〉 ≤ 〈φ,λmaxµ

+
maxφ〉.(4.11)

P r o o f. Let B = −Mν∂ν . Then (B + B̃ − Z − Z$)φ = Hφ for φ ∈ C∞0 (Ut,C n) by
lemma 4.3 and 4.4, where B̃ is the formal adjoint of B with respect to 〈·, ·〉In . Espe-
cially, 2 {|φ, (B−Z)φ|}± = {|φ,Hφ|}±, hence 2 {|φ, (M0)−1(B−Z)φ|}± = {|φ, (M0)−1Hφ|}±
by (4.6), i.e. 2 {|φ, Lφ|}± = {|φ, (M0)−1Hφ|}±, pointwise. Integration yields (4.10). With
(4.7) we see immediately µmin φ$Qφ ≤ Re (φ$QHφ) ≤ µmax φ$Qφ. This gives, by (4.5)
and (4.6), and denoting the minimal eigenvalue of (M0)−1 by λmin,

(λmin µ+
min + λmax µ−min) φ$Qφ ≤ Re

(
φ$Q(M0)−1Hφ

)

≤ (λmin µ−max + λmax µ+
max) φ$Qφ.

Because λmin and λmax are positive and µ−... ≤ 0 ≤ µ+
... , (4.11) is proved. !

5. The energy with respect to Ut

In general relativity, the energy properties of matter are represented by an energy-
momentum tensor Tij . Suppose a spacelike hypersurface Σ ⊂M, with the unit normal
N j . Then Ji = TijN j is the covariant energy-momentum vector with respect to Σ.
This is a 1-form, J = Ji dxi. Its dual, a 3-form, is given by

3J =
√
|g|

3∑

j=0

(−1)jJjdx0 ∧ . . . ∧ d̂xj ∧ . . . ∧ dx3
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(Choquet-Bruhat et al., 1982, pp. 316). If the coordinates {x0, ..., x3} are chosen
such that Σ = Σ(t) = {x ∈M | x0 = ct} for t ∈ IR, then

3J = J0
√
|g| dx1 ∧ dx2 ∧ dx3 = T 0

j N j
√
|g| dx1 ∧ dx2 ∧ dx3

on Σ, because dx0 = 0. Hence we call E =
∫
Σ 3J the total energy with respect to the

hypersurface Σ. In general, E is not independent of the hypersurface Σ. However, if
the N j is a Killing field, and if only Cauchy surfaces are considered, E is hypersurface-
independent and constant on M(Wald 1984, pp. 284, or Hawking and Ellis 1973,
pp. 206).

Let Ut be given as in section 4, equation (4.1), and suppose the conditions of lemma
3.2 above. Then we know by lemma 3.1 that the unit timelike future directed vector
field

N j =
g0j

√
g00

is everywhere orthogonal to the leaf Lt = ϕ̃−1({ct} × Ut) ⊂ M. Then Ji = TijN j

is the energy-momentum vector density, and T 00/g00 = TijN iN j is the local energy
density. The total energy E = E(t) with respect to the hypersurface Ut is given by

E =
∫

ϕ̃−1(Ut)
3J =

∫

Ut

1
g00

T 00d(3)x.

Here we are interested in the energy of a “test field” φ, i.e. a wave which responds but
does not influence the background geometry of the space-time. Hence the total energy-
momentum tensor T ij is the sum of the unperturbed geometry part T ij

(0), whatever,
and the wave part T ij

φ , i.e. T ij = T ij
(0) + T ij

φ . The total energy of the wave field φ is
then given by E = Eφ =

∫
Ut

T 00
φ /g00d(3)x.

This point of view can be compared to a possible interpretation of the Fermat
principle in the context of light rays in space-times: In a gravitational field light
propagates as if being in a medium of a certain index of refraction such that the rays
are curved lines. Nonetheless, physical interpretations are not immediate and simple.
E.g., the “speed of light in the medium” is not at all the physical speed measured by
a local observer, cf. Stephani (1991), p. 108.

In the special case of an asymptotically flat space-time we have N j → ∂t as r →∞,
and the energy density is asymptotically the one measured by a local observer γ with
γ̇ = ∂t. Consider a test field φ at time t with suppφ in a small spacelike neighborhood
of the asymptotic observer (“wave packet”). Then there is no difference between the
total energy measured by the observer and the total energy with respect to Ut.

6. Massless spin wave operators

In this section we will see that massless fields with spin s = n
2 , n ∈ {1, 2}, will be

described by an operator

L(s) : C∞0 (Ut,C 2s+1) → C∞0 (Ut,C 2s+1)(6.1)
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in a chart (U , ϕ̃) with g00(x) > 0 ∀x ∈ U . It is well-known that for s = 1
2 and s = 1

the spin wave equation have a well posed initial value formulation, e.g. Wald (1984),
pp. 375.

6.1. The Weyl operator

Massless spin-1
2 fields in a curved space-time are described by the Weyl equation

(lj∂j + ε− %)P 0 + (m̄j∂j + π − α)P 1 = 0,

(mj∂j + β − τ)P 0 + (nj∂j + µ− γ)P 1 = 0,

cf. Chandrasekhar (1983), p. 544, eq. (105, 106). With the five complex matrices

M( 1
2 )

j =
(

lj m̄j

mj nj

)
and Z( 1

2 ) =
(

ε− % π − α
β − τ µ− γ

)
(6.2)

(j = 0, 1, 2, 3) we may write instead

(
M( 1

2 )
j∂j + Z( 1

2 )

) (
P 0

P 1

)
= 0,

or equivalently
M( 1

2 )
0∂0φ = −

(
M( 1

2 )
ν∂ν + Z( 1

2 )

)
φ(6.3)

Especially for the Hermitian matrix M( 1
2 )

0 we can calculate by (2.1)

det
(
M( 1

2 )
0
)

= l0n0 −m0m̄ 0 = 1
2 g00.(6.4)

Now let (U , ϕ̃) be a chart satisfying (1.1). Then we have M( 1
2 )

0 ∈ GL(2,C), i.e. M( 1
2 )

0

is invertible. Defining the Weyl operator L( 1
2 ) : C∞0 (Ut,C 2) → C∞0 (Ut,C 2),

L( 1
2 ) := −c

(
M( 1

2 )
0
)−1(

M( 1
2 )

ν∂ν + Z( 1
2 )

)
(6.5)

as well as the spinor functions φ ∈ C∞0 (Ut,C 2), φ :=
(

P 0

P 1

)
, we may rewrite the

Weyl equation (6.3) in the form

∂tφ = L( 1
2 )φ.(6.6)

The current spinor of the Weyl field is given, in Penrose notation, by JAA′
= PAP̄A′

(A,A′ = 0, 1), cf. Güven (1977), eq. (2.8). By the transformation law Jj =
σAA′ jJAA′

with the Infeld-van der Waerden symbols written as matrices, σAA′ j =
M ( 1

2 )
j (Chandrasekhar 1983, pp. 539, or Penrose & Rindler 1984, pp. 122), we

see Jj = ljP 0P̄ 0′ + mjP 0P̄ 1′ + m̄jP 1P̄ 0′ + njP 1P̄ 1′ . Hence the energy density in Ut

is J0, i.e. the total energy E with respect to Ut is E = 〈φ,φ〉 with Q = 1
g00 M ( 1

2 )
0,



A. de Vries, The evolution of the Weyl and Maxwell fields in curved space-times 37

cf. Unruh (1974), eq. (2.9). By the relation (l0 − n0)2 + 4m0m̄ 0 = (l0 + n0)2 − 2g00

we see immediately that the eigenvalues of M( 1
2 )

0, hence the ones of g00Q, are

λ± =
1
2

(
l0 + n0 ±

√
(l0 + n0)2 − 2 g00

)
.(6.7)

We notice that they are positive, i.e. λ+ ≥ λ− > 0, if and only if (1.1) is valid.
Because now the eigenvalues of

(
M( 1

2 )
0
)−1 are exactly 1/λ± we may conclude for the

maximal one
λmax =

2
l0 + n0 −

√
(l0 + n0)2 − 2 g00

.(6.8)

By lemma 2.1 and equation (6.2) we have∇jM( 1
2 )

j = Z( 1
2 )+Z( 1

2 )
$, and thus∇jM( 1

2 )
j =

1√
|g|

∂j(
√
|g|M( 1

2 )
j). With B( 1

2 ) = −M( 1
2 )

ν∂ν and by (4.8) in theorem 4.5 we have

2 Re 〈φ, (B( 1
2 ) − Z( 1

2 ))φ〉 = 〈φ,H( 1
2 )φ〉, where

H( 1
2 ) =

1√
|g|

∂ν

(√
|g|M( 1

2 )
ν
)
− Z( 1

2 ) − Z( 1
2 )

$ = − 1√
|g|

∂0

(√
|g|

(
l0 m̄0

m0 n0

))
.

If we denote ha = − 1√
|g|

∂0

(√
|g| e(a)

0
)
, we may write

H( 1
2 ) =

(
h1 h4

h3 h2

)
,(6.9)

and the eigenvalues are µ1/2 = 1
2 (h1 +h2±

√
(h1 + h2)2 − 4(h1h2 − h3h4) ). So, using

theorem 4.5 we can state our final result for the Weyl operator (6.5) in curved space-
times,

c 〈φ,λmax µ−minφ〉 ≤ 2 Re 〈φ, L( 1
2 )φ〉 ≤ c 〈φ,λmax µ+

maxφ〉.(6.10)

6.2. The Maxwell operator

Maxwell’s equations in curved space-time are expressed in the Newman-Penrose for-
malism by

lj∂jφ1 − m̄j∂jφ0 = (π − 2α)φ0 + 2%φ1 − κφ2,

lj∂jφ2 − m̄j∂jφ1 = −λφ0 + 2πφ1 + (%− 2ε)φ2,

mj∂jφ1 − nj∂jφ0 = (µ− 2γ)φ0 + 2τφ1 − σφ2,

mj∂jφ2 − nj∂jφ1 = −νφ0 + 2µφ1 + (τ − 2β)φ2,

(6.11)

with the three complex Maxwell scalars φ0,φ1,φ2, e.g. Chandrasekhar (1983),
Kramer et al. (1980). Subtracting the fourth from the first equation and revers-
ing the sign of the third one we receive the system




nj −mj 0
−m̄j lj + nj −mj

0 −m̄j lj



∂j




φ0

φ1

φ2



=




2γ − µ −2τ σ

π − 2α + ν 2(%− µ) 2β − τ − κ
−λ 2π %− 2ε








φ0

φ1

φ2



.
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With the four Hermitian matrices

M(1)
j =





nj − 1√
2

mj 0

− 1√
2

m̄j 1
2 (lj + nj) − 1√

2
mj

0 − 1√
2

m̄j lj



 ,(6.12)

j = 0, 1, 2, 3, and with the notations

Z(1) =




µ− 2γ

√
2 τ −σ

1√
2

(2α− π − ν) µ− % 1√
2

(τ − 2β + κ)
λ −

√
2 π 2ε− %



, φ =




φ0√
2φ1

φ2



(6.13)

this means (M(1)
j∂j + Z(1))φ = 0, or

M(1)
0∂0φ = −

(
M(1)

ν∂ν + Z(1)

)
φ,(6.14)

cf. (6.3). By (6.12) we have

det M(1)
0 =

1
2

(l0 + n0)(l0n0 −m0m̄ 0) =
1
4

(l0 + n0) g00.

Thus in a coordinate chart with g00 > 0 we have M(1)
0 ∈ GL(3,C), and we can

define the Maxwell operator L(1) : C∞0 (Ut,C 3) → C∞0 (Ut,C 3),

L(1) := −c
(
M(1)

0
)−1(

M(1)
ν ∂ν + Z(1)

)
(6.15)

and the spinor functions φ ∈ C∞0 (Ut,C 3), where φ is a column vector as in (6.13).
Hence from Maxwell’s equations we deduce the evolution equation

∂tφ = L(1)φ.(6.16)

From det
(
λI3 −M(1)

0
)

= 1
2

(
(λ− n0)(λ− l0)−m0m̄ 0

)(
2 λ− (l0 + n0)

)
we calculate

the eigenvalues of M(1)
0,

λ1 = 1
2 (l0 + n0), λ± = 1

2

(
l0 + n0 ±

√
(l0 + n0)2 − 2 g00

)
.(6.17)

They are positive on U . The maximal eigenvalue of
(
M(1)

0
)−1 is

λmax =
2

l0 + n0 −
√

(l0 + n0)2 − 2g00
,(6.18)

cf. (6.8). By (1.1) we have (l0 + n0)2 − 2g00 <
(
l0 + n0 − g00

l0+n0)

)2, hence

λmax < 2
l0 + n0

g00
.(6.19)
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According to Chandrasekhar (1983), p. 422, (235), the energy-momentum tensor
in the Newman-Penrose formalism is given by T ij = T ij(φ) = φ$Aijφ with

Aij =
1
4π





ninj −
√

2 n(imj) mimj

−
√

2 n(im̄j) l(inj) + m(im̄j) −
√

2 l(imj)

m̄im̄j −
√

2 l(im̄j) lilj



.

For Q := A00/g00 the principal minors are (n0)2

4πg00 , Q33 = (n0)2

16π2g00 , det Q = 1
8π3 ; i.e. Q

is positive definite, if and only if (1.1) is valid. Thus the total energy of a Maxwell
spinor φ ∈ C∞0 (Ut,C 3) with respect to Ut is given by

E = E(φ) =
∫

Ut

φ$Qφ d(3)x.

We mention that both A00 and A0
0 are not positive definite, if g00 gets non-positive, as

can be shown easily with the respective principal minors. One might argue that it is
rather unphysical to assume g00 ≤ 0, but this must be strongly rejected: the ergosphere
of a Kerr-Newman black indeed has this property, as will be seen below. Moreover, this
definition arises most naturally considering the Maxwell scalars as the dyad compo-
nents of the 3-dimensional complex bispinors φAB , e.g. Carmeli (1977), p. 174: T ij is
exactly the electromagnetic energy-momentum spinor TAA′BB′ = 1

2π φABφ̄A′B′ (Pen-
rose & Rindler 1984, pp. 325), rewritten with the aid of the Infeld-van der Waerden
symbols, analogously to the Weyl case above. In flat Minkowski space-time the energy
density becomes the usual one: Defining the two real 3-vector fields E = (Ex, Ey, Ez)
and B = (Bx, By, Bz) by φ0 = 1√

2
(By − Ex + i(Ey + Bx)), φ1 = 1√

2
(Ez − iBz),

φ2 = 1√
2
(Ex + By + i(Ey −Bx)), (Stephani 1991, p. 167), we see with the Newman-

Penrose tetrad of Minkowski space,

lj =nj =
1√
2
(1, 0, 0, 1), nj = lj =

1√
2
(1, 0, 0,−1), mj =−mj =

1√
2
(0, 1, i, 0),

cf. de Vries (1994), that Q = 1
8π I3 and thus

φ$Qφ =
1
8π

(φ̄0,
√

2 φ̄1, φ̄2)




φ0√
2 φ1

φ2



 =
1
8π

(E2 + B2).

This is the usual energy density of the (E,B)-field, e.g. Landau and Lifschitz (1975).
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With lemma 2.1, H(1) = (hαβ)α,β=1,2,3 in (20) is, analogously to H( 1
2 ) above, given by

h11 = 2 Re γ − 1√
|g|

∂0(
√
|g|n0),

h12 =
1√
2

(
ν̄ − τ − β − ᾱ +

1√
|g|

∂0(
√
|g| m0)

)
,

h13 = σ − λ̄,

h22 = Re(ε + %− µ− γ)− 1
2
√
|g|

∂0

(√
|g| (l0 + n0)

)
,

h23 =
1√
2

(
β + ᾱ + π̄ − κ +

1√
|g|

∂0(m0)
)
,

h33 = −2 Re ε− 1√
|g|

(
√
|g| l0).

(6.20)

Thus 2 Re〈φ, Lφ〉=c〈φ, (M0)−1H(1)φ〉 for a Maxwell spinor φ ∈ C∞0 (Ut,C 3), and with
µmin and µmax the minimal and maximal eigenvalues of H(1) and λmax the maximal
one of (M0)−1 as given by (6.18), we conclude

c 〈φ,λmax µ−minφ〉 ≤ 2 Re〈φ, L(1)φ〉 ≤ c 〈φ,λmax µ+
maxφ〉.(6.21)

7. The Kerr-Newman space-time

Let (M, g), M ∼= IR× IR3\{0}, be the Kerr-Newman space-time in Boyer-Lindquist
coordinates (ct, r, θ, ϕ) ∈ IR× (0,∞)× (0,π)× (0, 2π). The contravariant components
of the metric tensor are given in each point by the matrix

gij =





Σ
ρρ̄∆

0 0
(2Mr −Q2)a

ρρ̄∆
0 −∆

ρρ̄
0 0

0 0 − 1
ρρ̄

0

(2Mr −Q2)a
ρρ̄∆

0 0 −∆− a2 sin2 θ

ρρ̄∆ sin2 θ





with the functions

∆ = ∆(r) = r2 − 2Mr + a2 + Q2, ρ = ρ(r, θ) = r + ia cos θ,

Σ = Σ(r, θ) = ρρ̄(r2 + a2) + (2Mr −Q2)a2 sin2 θ
(7.1)

and the constants M,a,Q ∈ IR, M ≥ 0, satisfying the condition

a2 + Q2 ≤ M2.(7.2)
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M specifies the mass, a the rotation, and Q the charge of the Kerr-Newman space-time,
describing a black hole as long as (7.2) holds. Consider the Kinnersley tetrad

lj =
1√
2∆

(r2+a2,∆, 0, a), lj =
1√
2∆

(∆,−ρρ̄, 0,−a∆ sin2 θ),

nj =
1√
2ρρ̄

(r2+a2,−∆, 0, a), nj =
1√
2ρρ̄

(∆, ρρ̄, 0,−a∆ sin2 θ),

mj =
1√
2ρ

(ia sin θ, 0, 1,
i

sin θ
), mj =

1√
2ρ

(ia sin θ, 0,−ρρ̄,−i(r2+a2) sin θ),

(7.3)

cf. Kalnins & Williams (1990). In this tetrad the spin coefficients are given by

ε = κ = σ = ν = λ = 0,

β =
cot θ

2
√

2ρ
, % = − 1√

2ρ̄
, τ = − ia sin θ√

2ρρ̄
, π =

ia sin θ√
2ρ̄ 2

,

µ = − ∆√
2ρρ̄ 2

, α = π − β̄, γ = µ +
r −M√

2ρρ̄
.

(7.4)

If r± = M ±
√

M2 − a2 −Q2 are the two zeroes of ∆, the hypersurface r ≡ r+ is the
event horizon, and r ≡ re = M +

√
M2 −Q2 − a2 cos2 θ the ergo horizon of the black

hole. Notice re ≥ r+ ≥ 0 with (7.2). Further let

U = {(ct, r, θ, ϕ) ∈ IR× (r+,∞)× S2}.

Then the outer space of the black hole is the pre-image U ⊂ M of U under the
coordinate map x 8→ (ct, r, θ, ϕ). We easily see ρρ̄ > 0, ∆ > 0 for r > r+, thus

0 < ρρ̄∆ = ρρ̄(r2 + a2)− (2Mr −Q2)ρρ̄ ≤ Σ.

Hence we have, with g00 = Σ/ρρ̄∆,

g00(x) ≥ 1 ∀x ∈ U .(7.5)

Thus U satisfies condition (1.1). Ut = {(r, θ,ϕ) | (ct, r, θ, ϕ) ∈ U} with fixed t ∈ IR
is a connected open subset of IR3, as in (4.1). The chart domain of Ut, the leaf
Lt = ϕ̃−1(Ut), is a partial Cauchy surface of M, cf. Hawking & Ellis (1973).

Because of the stationarity of the Kerr-Newman space-time we have by (6.9) H( 1
2 ) =

0, and thus we conclude for the Weyl operator L( 1
2 ) (6.5) by (6.10),

Re 〈φ, L( 1
2 )φ〉 = 0,(7.6)

cf. de Vries (1994). More complicated is the calculation of the energy norm for the
Maxwell operator. Checking up (r2 + a2)(ρρ̄ + ∆)/Σ ≤ 2(r2 + a2)ρρ̄/Σ ≤ 2, we find
with (7.1) and (7.3) (l0 + n0)/g00 ≤

√
2, i.e. by (6.19)

λmax ≤ 2
√

2.(7.7)
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Because of

Re % = − r√
2ρρ̄

, Re µ = − r∆√
2ρ2ρ̄ 2

, Re γ =
1√
2ρρ̄

(
r −M − r∆

ρρ̄

)
,

we have by (6.20)

h22 = −2r(ρρ̄−∆)−Mρρ̄√
2ρ2ρ̄ 2

.(7.8)

We see immediately h13 = h33 = 0. Because of h12 = −(π̄ + τ)/
√

2 we have

h12 =
ia sin θ

2ρ

(1
ρ̄

+
1
ρ

)
=

iar sin θ

ρ2ρ̄
,

and similarly h23 =
√

2 π̄, i.e.

h23 = − ia sin θ

ρ2
.

With the ansatz φk = fk(r, θ) ei(ωt+mϕ), k = 0, 1, 2, ω ∈ (0,∞), m ∈ ZZ, and noticing
nj = 1√

2
(1,−1, 0, 0) + O(r−1)-terms, mj = O(r−1), 2γ−µ = O(r−1), τ = O(r−2) and

σ = 0, we recognize the third one of Maxwell’s equations (6.11) to be, up to O(r−1)-
terms, ∂tφ0 ≈ c∂rφ0, i.e. ∂rf0 ≈ iω/cf0. Thus we have φ0 → const ei(ω(t+r/c)+mϕ)

as r → ∞. Therefore φ0 represents an incoming wave. So, considering scattering
processes of electromagnetic waves measured in the asymptotic flat region r →∞ far
away from the black hole, we may neglect the energy rate evolution of φ0 in so far, as
it does not interact with φ1 and φ2. Therefore we may set h11 = 0, hence by (6.20)

H(1) =




0 h12 0

h̄12 h22 h23

0 h̄23 0



.

We achieve by det(λI3−H(1)) = λ
(
λ2−h22λ− (|h12|2 + |h23|2)

)
the three eigenvalues

λ = 0, λ = µ+, λ = µ− where

µ± =
1
2

h22 ±

√
(1

2
h22

)2
+

a2 sin2 θ

ρ2ρ̄ 2

(
1 +

r2

ρρ̄

)
.(7.9)

Now we try to estimate h22. First we see ρρ̄−∆ =2 Mr − a2 sin2 θ −Q2, i.e.

2r(ρρ̄−∆)−Mρρ̄ = 3Mr2 − 2Q2r − a2(2r sin2 θ + M cos2 θ).

With r > M it follows −2a2r ≤ −a2(2r sin2 θ + M cos2 θ) ≤ −a2M, therefore

3Mr2 − 2Q2r − 2a2r ≤ 2r(ρρ̄−∆)−Mρρ̄ ≤ 3Mr2 − 2Q2r − a2M.(7.10)

By (7.2) we have rM(3r − 2M) = 3Mr2 − 2M2r ≤ 3Mr2 − 2Q2r − 2a2r, hence we
get from (7.10) and (7.8)

−3Mr2 − 2Q2r − a2M√
2ρ2ρ̄ 2

≤ h22 ≤ −rM(3r − 2M)√
2ρ2ρ̄ 2

≤ 0.(7.11)
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We notice that for M > 0 necessarily h22 < 0, and that h22 = 0, iff M = 0. We
conclude from (7.9) µ− ≤ 0 ≤ µ+, and thus by (6.21) and (7.7)

2
√

2 c 〈φ, µ−φ〉 ≤ 2 Re〈φ, L(1)φ〉 ≤ 2
√

2 c 〈φ, µ+φ〉.(7.12)

Corollary 7.1. Let L(1) be the Maxwell operator (6.15) in the Kerr-Newman space-
time. Then we have the estimate

− 2c

r2
+

(
3M + 2|a|

)
‖φ‖2 ≤ 2 Re〈φ, L(1)φ〉 ≤

4c |a|
r2
+

‖φ‖2.(7.13)

P r o o f. Because ρρ̄ + r2 = 2r2 + a2 cos2 θ ≤ 2r2 + 2a2 cos2 θ = 2ρρ̄, and by the
elementary inequality p2 + q2 ≤ (|p|+ |q|)2 for any real numbers p, q, we may estimate
the root term in (7.9) √... ≤

√
2 |a| sin θ/ρρ̄− h22/2 with (7.11). This means

0 ≤ µ+ ≤
√

2
|a| sin θ

ρρ̄
,

and h22 −
√

2 |a| sin θ/ρρ̄ ≤ µ− ≤ h22, or

−
√

2
ρρ̄

(
3Mr2 − 2Q2r − a2M

2ρρ̄
+ |a| sin θ

)
≤ µ− ≤ −

rM(3r − 2M)√
2ρ2ρ̄ 2

.(7.14)

By r2
+ < r2 ≤ ρρ̄ and (2Q2r + a2M)/ρρ̄ → 0 for r →∞ we have

−
√

2
r2
+

(
3
2 M + |a|

)
≤ µ− ≤ µ+ ≤

√
2
|a|
r2
+

.

(7.12) completes the proof. !

8. Conclusion

We notice that the upper bound of the energy change rate in (7.13) is positive in
the rotating case, i.e. if a -= 0. Thus an electromagnetic wave in the outer space of a
Kerr-Newman black hole may gain energy. Hence our result provides an affirmation
and even a quantitative control of the superradiance in the Kerr case Q = 0, first
observed by Teukolsky (1973) and Starobinskii and Churilov (1973), after the
pioneering works of Zel’dovich (1972) and Misner (1972). In the contrary, (7.6)
shows that a Weyl neutrino field preserves energy, cf. Unruh (1974). However, in
this context superradiance has been shown with the aid of the vector field ∂t in Kerr
space-time that is Killing everywhere, but gets spacelike in the ergosphere, whereas
our considerations are based on the unit normal of the hypersurfaces {dt = 0} that is
everywhere timelike and asymptotically Killing.

The methods developed here are also easily applicable to the context of the massive
Dirac equation, as is done in (de Vries 1994). They might extend naturally to the
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case of massless spin-s waves with s > 1. So they may eventually open a door for
analyzing interactions of curved space-times and spin, which lead in the context of
a rotating black hole to a “filtering process” amplifying spin-n waves, and ignoring
spin-n

2 waves (n ∈ IN), cf. Chandrasekhar (1983).
Moreover the quantitative limits in eq. (7.6) for the rate of change of energy of

electromagnetic fields in the outer space of a Kerr-Newman black hole may be used
to estimate bounds for the mass of all black holes in the observable universe with aid
of the cosmic background radiation anisotropy measurements of the COBE satellite,
cf. (de Vries et al. 1995).
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