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FH Südwestfalen University of Applied Sciences, Haldener Straße 182, D-58095 Hagen, Germany

e-Mail: de-vries.andreas@fh-swf.de

Version: September 4, 2006; supplemented: March 1, 2021

Contents

1 Introduction 2

2 Daubechies wavelets 2
2.1 Dyadic numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Properties of Daubechies scaling functions . . . . . . . . . . . . . . . . . . . . . . . 8

3 The fast Daubechies wavelet transform 9
3.1 Fast Inverse Daubechies Wavelet Transformation . . . . . . . . . . . . . . . . . . . 12

4 General approach to wavelets 13
4.1 The Fourier transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Basic properties of wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 Wavelets and subband filters . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Orthonormal wavelet packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Biorthogonal wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4.1 The one-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.2 The two-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Malvar-Wilson wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Wavelet transformation 26
5.1 The image space of a wavelet transformation . . . . . . . . . . . . . . . . . . . . . 28

6 Sweldens’ lifting scheme 29

7 Chirplets and the wavelet transformation 29

8 Vision 31
8.1 Marr’s program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2 Edge recognition by zero-crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.3 Mallat’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.3.1 Mallat’s algorithm in two dimensions . . . . . . . . . . . . . . . . . . . . . 35

1

mailto:de-vries.andreas@fh-swf.de


1 Introduction

Wavelet methods constitute the underpinning of a new comprehension of time-frequency analy-
sis, or “space-wavenumber” analysis. They have emerged independently within different scientific
branches of study until all these different viewpoints have been subsumed under the common terms
of “wavelets” and “time-scale analysis”, or “scale-space-analysis” in the context of image processing.

Wavelet theory is closely connected to the Fourier transformation. In turn, the continuous wavelet
transformation is an integral transformation similar to the Fourier transformation. But whereas the
Fourier transformation analyzes the global regularity of a function, the wavelet transform analyzes
the pointwise regularity of a function.1 Wavelet theory involves representing general functions in
terms of simpler, fixed building blocks at different scales and positions.

The present essay gives a short introduction into the theory of wavelets and some of its appli-
cations. It is organized as follows. First the important class of Daubechies wavelets is considered.
They were developed by Ingrid Daubechies at the end of the 1980’s and represent a new kind of func-
tions. They are frequently used in applications. Subsequently, the fast Daubechies transformation is
introduced, a special discrete wavelet transformation basing on the Daubechies wavelets. Having this
concrete examples in mind, then the approach to general wavelets and the wavelet transformation is
given, before Sweldens’ lifting scheme, as a method to compute a discrete wavelet transform without
explicit knowledge of the underlying wavelet, is described and some applications of wavelets to the
related chirplets and to the theory of the human vision are considered.

2 Daubechies wavelets

Definition 2.1 For N ∈N, a Daubechies wavelet of class D-2N is a function ψ = Nψ ∈ L2(R) defined
by

ψ(x) :=
√

2
2N−1

∑
k=0

(−1)kh2N−1−k ϕ(2x− k), (1)

where h0, . . . , h2N−1 ∈ R are the constant filter coefficients satisfying the conditions

N−1

∑
k=0

h2k =
1√
2
=

N−1

∑
k=0

h2k+1, (2)

as well as, for l = 0, 1, . . . , N−1,

2N−1+2l

∑
k=2l

hk hk−2l =

{
1 if l = 0,
0 if l 6= 0,

(3)

and where ϕ = Nϕ : R→R is the (Daubechies) scaling function (sometimes also “scalet” or “father
wavelet”), given by the recursion equation

ϕ(x) =
√

2
2N−1

∑
k=0

hk ϕ(2x− k) (4)

and obeying
ϕ(x) = 0 for x ∈ R\ [0,2N−1[. (5)

1http://cas.ensmp.fr/˜chaplais/Wavetour presentation/Regularite/Regularity.html
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as well as ∫
R

ϕ(2x− k)ϕ(2x− l)dx = 0 for k 6= l. (6)

See [2, 3]. �

The first basic problem to construct Daubechies wavelets is the determination of the coefficients
h0, . . . , h2N−1 which admit a nonvanishing scaling function ϕ satisfying (4). Note that there are N
equations given by the orthonormality conditions (3). Together with (2) this gives in total N + 2
equations for the 2N filter coefficients hk. Hence, for N = 1, they are overdetermined, for N = 2
they are unique (if they exist), and for N > 2 they are underdetermined. However, once the filter
coefficients are given, an elegant proof [8, Cor. 8.9], with the aid of the Fourier transformation of
the corresponding recursion operator,2 demonstrates the existence and uniqueness of a function ϕ

satisfying (4) and the normalization condition
∫
R ϕ = 1, for a given sequence of h0, . . . , h2N−1.

The usual way, however, is the other way round: to first define the scaling function ϕ , and then to
derive the filter coefficients. The general procedure will be outlined in Section 4.2, see Eq. (62).

Example 2.2 (D2 wavelet, or Haar wavelet) Let N = 1 and h0 = 1/
√

2, h1 = 1/
√

2. Then the func-
tion with the initial values ϕ(0) = 1, ϕ(k) = 0 for k ∈ Z, k 6= 0, determines the unique scaling func-
tion. Eq. (4) then reads simply ϕ(x) = ϕ(2x)+ϕ(2x−1), i.e.,

x · · · −1
2 −1

4 0 1
4

1
2

3
4 1 5

4 · · ·
ϕ(x) · · · 0 0 1 1 1 1 0 0 · · ·

(7)

Eq. (1) reads ψ(x) =−ϕ(2x−1)+ϕ(2x), giving

x · · · −1
2 −1

4 0 1
4

1
2

3
4 1 5

4 · · ·
ψ(x) · · · 0 0 1 1 −1 −1 0 0 · · ·

(8)

In fact, ϕ and ψ turn out to be simply the step functions

ϕ(x) =
{

1 if 05 x < 1,
0 otherwise,

ψ(x) =


1 if 05 x < 1

2 ,
−1 if 1

2 5 x < 1,
0 otherwise.

(9)

�

Example 2.3 (D4 wavelet) Let n = 1, N = 2 and

h0 =
1+
√

3
4
√

2
, h1 =

3+
√

3
4
√

2
, h2 =

3−
√

3
4
√

2
, h3 =

1−
√

3
4
√

2
. (10)

Then the function with the initial values

ϕ(1) =
1+
√

3
2

, ϕ(2) =
1−
√

3
2

, ϕ(k) = 0 for k ∈ Z\{1, 2}, (11)

2Define, for a given sequence h0, . . . , h2N−1, the linear operator T : F→ F on the function space F= { f : R→ R} by

(T f )(x) =
2N−1

∑
k=0

hk f (2x− k).

Then the recursion (4) for a function ϕ means that ϕ = T ϕ , i.e., a scaling function is a fixed point of T , i.e., an eigenfunction
with eigenvalue 1.
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determines the unique scaling function. Eq. (4) then reads ϕ(x) =
√

2 [h0 ϕ(2x) + h1 ϕ(2x− 1) +
h2 ϕ(2x−2)+h3 ϕ(2x−3)], i.e.,

x 0 1
4

1
2

3
4 1 5

4
3
2

7
4 2 9

4
5
2

11
4 3

ϕ(x) 0 5+3
√

3
16

2+
√

3
4

9+5
√

3
16

1+
√

3
2

1+
√

3
8 0 1−

√
3

8
1−
√

3
2

9−5
√

3
16

2−
√

3
4

5−3
√

3
16 0

(12)

Eq. (1) reads

ψ(1) =
√

2 [h3 ϕ(2)−h2 ϕ(1)+h1 ϕ(0)−h0 ϕ(−1)] =
1−
√

3
2

, (13)

and similarly computed for other values,

x . . . 0 1
2 1 3

2 2 5
2 3 . . .

ψ(x) . . . 0 −1
4

1−
√

3
2

√
3 −1+

√
3

2 −1
4 0 . . .

(14)

�
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Figure 1: (a) Scaling function 2ϕ of Daubechies class D4; (b) wavelet 2ψ of Daubechies class D4; (c) scaling function
10ϕ of Daubechies class D20; (d) wavelet 10ψ of Daubechies class D20.

Example 2.4 (Wavelet of Rank 2 and Genus 2) [10, Ex. 4.3] Let n = 1, N = 2, and define a one-
parameter family of filter coefficients

h0(θ) =
1+
√

2 cos(θ + π

4 )

2
√

2
, h0(θ) =

1+
√

2 cos(θ − π

4 )

2
√

2
,

h0(θ) =
1−
√

2 cos(θ + π

4 )

2
√

2
, h0(θ) =

1−
√

2 cos(θ − π

4 )

2
√

2
, (15)

where 05 θ 5 2π . Especially for θ = π

6 , these coefficients yield the wavelets of the Daubechies class
D4 in Example 2.3. �
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Daubechies orthogonal wavelets of classes D2 – D20 (even index numbers only) are the wavelets
commonly used. The index number refers to the number 2N of coefficients. Each wavelet has a
number of vanishing moments equal to half the number of coefficients:∫

R
x j

Nψ(x)dx = 0 for j = 0, . . . , N. (16)

For example D2 = ψ , the Haar wavelet, has one vanishing moment. D4 = ψ has two moments, etc.
A vanishing moment refers to the wavelets ability to represent polynomial behaviour or information
in a signal. For example, D2, with one moment, easily encodes polynomials of one coefficient, i.e.,
constant signal components. D4 encodes polynomials of two coefficients, i.e., constant and linear
signal components, D6 encodes 3-polynomials, i.e., constant, linear and quadratic signal components.
A high number of vanishing moments for a wavelet leads to a high compressibility since the fine scale
wavelet coefficients of a function are essentially zero where the signal function is smooth [3, §7.4].

The regularity of a Daubechies wavelet is measured by the “Hölder exponent” α and proportional
to its degree N, viz., α = µNN with a the proportionality factor limited by µN > 0.2 [3, §7.1.2].
Especially, α > 1 for N = 3, i.e., Nϕ , Nψ are continuously differentiable for N = 3 [3, pp. 226,239].
In general, for fixed support width of ϕ and ψ , or equivalently for a fixed number of non-vanishing
filter coefficients hk, the choice of the hk which leads to maximum regularity of the wavelet is different
from the choice with the maximum number of vanishing moments for the wavelet ψ .

In Table 1, there are listed the coefficients for the scaling functions D2-20. The wavelet coeffi-

D2 D4 D6 D8 D10 D12 D14 D16 D18 D20
0.7071067811865475 0.4829629131445341 0.3326705529500825 0.2303778133088964 0.1601023979741929 0.1115407433501095 0.0778520540850037 0.0544158422431072 0.0380779473638778 0.0266700579005473
0.7071067811865475 0.8365163037378077 0.8068915093110924 0.7148465705529155 0.6038292697971895 0.4946238903984533 0.3965393194818912 0.3128715909143166 0.2438346746125858 0.1881768000776347

0.2241438680420134 0.4598775021184914 0.6308807679398587 0.7243085284377726 0.7511339080210959 0.7291320908461957 0.6756307362973195 0.6048231236900955 0.5272011889315757
-0.1294095225512603 -0.1350110200102546 -0.0279837694168599 0.1384281459013203 0.3152503517091982 0.4697822874051889 0.585354683654216 0.6572880780512736 0.6884590394534363

-0.0854412738820267 -0.1870348117190931 -0.2422948870663823 -0.22626469396544 -0.1439060039285212 -0.0158291052563823 0.1331973858249883 0.2811723436605715
0.0352262918857095 0.0308413818355607 -0.0322448695846381 -0.1297668675672625 -0.2240361849938412 -0.2840155429615824 -0.2932737832791663 -0.2498464243271598

0.0328830116668852 0.0775714938400459 0.0975016055873225 0.0713092192668272 4.724845739124E-4 -0.0968407832229492 -0.1959462743772862
-0.010597401785069 -0.0062414902127983 0.0275228655303053 0.0806126091510774 0.1287474266204893 0.1485407493381256 0.1273693403357541

-0.012580751999082 -0.0315820393174862 -0.0380299369350104 -0.017369301001809 0.0307256814793365 0.0930573646035547
0.0033357252854738 5.538422011614E-4 -0.0165745416306655 -0.0440882539307971 -0.0676328290613279 -0.0713941471663501

0.0047772575109455 0.0125509985560986 0.0139810279174001 2.50947114834E-4 -0.0294575368218399
-0.0010773010853085 4.295779729214E-4 0.0087460940474065 0.0223616621236798 0.0332126740593612

-0.0018016407040473 -0.004870352993452 -0.0047232047577518 0.003606553566987
3.537137999745E-4 -3.91740373377E-4 -0.0042815036824635 -0.0107331754833007

6.754494064506E-4 0.0018476468830563 0.0013953517470688
-1.174767841248E-4 2.303857635232E-4 0.0019924052951925

-2.519631889427E-4 -6.858566949564E-4
3.93473203163E-5 -1.164668551285E-4

9.35886703202E-5
-1.32642028945E-5

Table 1: Normalized filter coefficients hk of the orthogonal Daubechies D2N scaling functions Nφ , giving the compactly
supported wavelets with extremal phase and highest number of vanishing moments compatible with their support width.
The values are listed from [3].

cients gk giving ψ(x) =
√

2 ∑k gkϕ(2x− k) are derived from hk by gk = (−1)kh2N+1−k, cf (1).
Daubechies [2] proved that the scaling functions Nϕ , for N > 1 are functions which do not admit

an algebraic formula in terms of elementary functions. Indeed, they belong to a new class of math-
ematical functions, different from polynomials or trigonometric, exponential, elliptic, and standard
special functions in engineering and physics.

By (4), the Daubechies scaling functions are defined recursively, starting from initial values on the
set of integers Z. The next values to be computed are the values for half-integers 1

2 n, derivable from
the initial values. The values computed next are the numbers 1

4 n, then 1
8 n, and so on. Therefore, the

function values are usually computed for numbers with finite binary expansion, so-called “dyadic”
numbers. However, they are computable for any rational values, e.g., [Abb].3

3Thanks to Paul Abbott for this hint.
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Figure 2: The scaling functions Nϕ (blue) and the corresponding wavelets Nψ (red) of the Daubechiesn class D(2N), for
N = 1, 2, . . . 10.
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2.1 Dyadic numbers

Definition 2.5 A number x ∈R is called integer dyadic if it is an integer multiple of an integer power
of 2. The set of all dyadic numbers is denoted by D, i.e.,

D= {m ·2n : m, n ∈ Z}. (17)

For an integer n ∈ Z, a number x ∈ R is called n-dyadic if it is an integer multiple of 2−n, and the set
Dn denotes the set of all n-dyadic numbers,

Dn =
{

m ·2−n : m ∈ Z
}
. (18)

�

Generally, Dn = 2−nZ, especially D0 = Z.

Examples 2.6 (a) The number x = 3
8 is dyadic, since x = 3 ·2−3, i.e., 3

8 ∈D3. It has binary expansion
3
8 = 0.0112.

(b) The number x = 4.5 is dyadic, since x = 9 · 2−1, i.e., 4.5 ∈ D1. It has binary expansion
4.5 = 100.12.

(c) The number x = 1
3 is not dyadic: If integers m and n existed such that 1

3 = m/2n, we would
have 2n = 3m, which is impossible since a pure power of 2 cannot be divided by 3 (by the unique
prime factorization). It has infinite binary expansion 1

3 = 0.012.
(d) Any rational number p

q where p, q ∈ Z are relatively prime and where q is no pure power of 2
(i.e., @n ∈ Z with q = 2n), is not dyadic. Assume that it were dyadic; then there existed m, n ∈ Z such
that p

q = m/2n, i.e., q = 2n p/m ∈ Z; since p and q are relatively prime, p could be canceled at the
right hand side, i.e., m would be a multiple of p, but since 2n p/m would be integer, we had m = 2k p
for a k 5 n, thus q = 2n−k; this would contradict the assumption on q. For instance, 2

5 = 0.011002 or
1
10 = 0.00011002 are not dyadic.

(d) An irrational number x∈R\Q is not dyadic, since if m/2n ∈Q for any m, n∈Z. For instance,
x =
√

2 = 21/2 is not dyadic. In general, we therefore have the set inclusions

. . .⊂ D−1 ⊂ D0 ⊂ D1 ⊂ . . .⊂ Dn ⊂ . . .⊂ D⊂Q⊂ R. (19)

To summarize, any integer is dydadic, but “most” of the rationals are not, and a fortiori any irrational
number is not dyadic. Contrary to Q, the set D established with the usual multiplication does not form
a group (because there does not exist necessarily a multiplicative inverse x−1, e.g., 3 ∈ D but 1

3 /∈ D),
but only a semigroup, just like Z. �

Definition 2.7 Denote by D[
√

3] the set of all linear combinations with dyadic coefficients p, q ∈ D,
i.e.,

D[
√

3] =
{

p+q
√

3 : p, q ∈ D
}
. (20)

Analogously, for n ∈ Z denote

Dn[
√

3] =
{

p+q
√

3 : p, q ∈ Dn

}
. (21)

Moreover, for each dyadic number x ∈ D define the conjugate (with respect to
√

3) by

p+q
√

3 := p−q
√

3. (22)

�
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Example 2.8 For 9+5
√

3
16 = 9

24 +
5
24 ∈ D4[

√
3], we have 9+5

√
3

16 = 9−5
√

3
16 . �

The set D[
√

3], established with ordinary addition and multiplication, is an “integral ring”, which
means that addition and multiplication obey the laws of commutativity, associativity, and distribu-
tativity, both have an additive and a multiplicative neutral element (0 and 1) as well as an additive
inverse (−x), but not necessarily a multiplicative inverse (x−1), see [8, §3.1].

Theorem 2.9 Let ϕ be the Daubechies D4 scaling function as defined in Example 2.3. For each
dyadic number r ∈ D we then have the following properties.

ϕ(r) = D[
√

3], (23)

ϕ(r) = ϕ(3− r) (24)

∑
k∈Z

ϕ(r− k) = 1 (25)

∑
k∈Z

(S1 + k)ϕ(r− k) = r where S1 =
2N−1

∑
k=0

2kh2k =
3−
√

3
2

. (26)

Proof. [8, §9.1.2]. �

Eqs. (23) and (23) show that is suffices to calculate values ϕ(r) only for 0 5 r 5 3
2 , because the

remaining values follow by conjugation. We note that especially for the initial values of ϕ in (11)
we have ϕ(2) = ϕ(1). Eq. (25) is called a partition of unity, and Eq. (26) is called a partition of the
identity.

2.2 Properties of Daubechies scaling functions

In this section we will list some general properties about the Daubechies scaling functions which are
useful to compute the its values, once the filter coefficients hk are given. First we observe that in
general the normalization of the integer initial values also normalize the intergral.

Theorem 2.10 For a sequence of filter coefficients h0, . . . , h2N−1 and a continuous function ϕ ∈
C0(R) satisfying conditions (2) – (6), together with the additional condition

∑
n∈Z

ϕ(n) = 1, (27)

then
∫
R ϕ(x)dx = 1.

Proof. The assertion can be shown by first proving by induction over m ∈ N that ∑n∈Z
1

2m ϕ
( n

2m

)
= 1,

and then approximating the integral by Riemann sums at the midpoints [8, Prop. 9.2]. �

Next we will consider the initial values for the recursion equation of ϕ at the “inner integer
points” for N > 1, where we assume that ϕ vanishes at the boundaries of the compact support,
i.e., ϕ(0) = ϕ(2N − 1) = 0. (This requirement is due to the assumed continuity of ϕ and is ob-
solete for the discontinuous Haar case N = 1.) It is directly verified [8, §9.1] that the vector x =
(ϕ(1),ϕ(2), . . . ,ϕ(2N−2))T is an eigenvector with eigenvalue 1 of the (2N−2)× (2N−2)-matrix
A = (ai j) with entries

ai j =

{ √
2h2i− j if 2i− j ∈ {0, . . . , 2N−1},

0 otherwise,
(i, j = 1, . . . , 2N−2) (28)

8



i.e., Ax = x. Note that the odd columns of A contain the filter coefficients with odd indices, and the
even columns the coefficients with even indices. Together with the additional condition

2N−2

∑
n=1

ϕ(n) = 1 (29)

the initial values are unique for N > 1 if A is regular (i.e., detA 6= 0).

Example 2.11 Let for N = 2 be hk the coefficients (10) of the Daubechies D4 wavelet. Then

A =
√

2
(

h1 h0
h3 h2

)
=

1
4

(
3+
√

3 1+
√

3
1−
√

3 3−
√

3

)
. (30)

Then x = (ϕ(1),ϕ(2)), and the condition for an eigenvector to the eigenvalue 1 yields the linear
equation (A− I)x = 0, or ( √

2h1−1
√

2h0√
2h3

√
2h2−1

)(
ϕ(1)
ϕ(2)

)
=

(
0
0

)
. (31)

The first equation, for instance, yields ϕ(2) =−
√

2h1−1√
2h0

ϕ(1) = 1−
√

3
1+
√

3
ϕ(1), thus ϕ(1)+ϕ(2) = 2ϕ(1)

1+
√

3
,

and the normalization condition (29) yields the values ϕ(1) and ϕ(2) as in Eq. (11). Since detA =
2(h1h2− h0h3) =

1
2 , the matrix A is regular and the initial values are determined uniquely by the

normalization. �

3 The fast Daubechies wavelet transform

By a linear combination f̃ of shifted scaling functions ϕ and wavelets ψ , Daubechies wavelets can
approximate a function f which may represent an arbitrary signal. The higher the index of the
Daubechies wavelets, the smoother the approximation f̃ of f which is known only from an equidistant
sample

s = (s0,s1, . . . ,s2n−2,s2n−1).

For the fast wavelet transformation to succeed, the sample must contain a number of values equal
to an integral power of 2, otherwise it becomes necessary to to shorten or extend the sample. Here
we may assume that the values s sample the signal function f at integer points such that sk = f (k).
(If not, a change of variable x→ x/` allows to consider sk = f (k/`), for the length ` > 0 of the
sample interval.) The Daubechies scaling function begins to approximate the sample s by the linear
combination

f̃ (x) =
2n+1−1

∑
k=0

a(n)k ϕ(x− k) (32)

with coefficients a(n)k determined by the signal (sk). This is a discrete convolution of the signal with
the scaling function [9, §13.1]. In essence, the fast Daubechies wavelet transformation consists of
two steps in which the signal is convolved with shifted scaling functions and wavelets.

Step 1 (Preprocessing): The first step of the algorithm is to determine the initial values of the
coefficients a0, . . . , a2n−1. For this purpose, the sample has to be extended by 2n +N entries to

s′ = (s0,s1, . . . ,s2n−2,s2n−1︸ ︷︷ ︸
sample data

,s2n ,s2n+1, . . . ,s2n+1−2︸ ︷︷ ︸
extension

,s0,s1, . . . ,sN−1︸ ︷︷ ︸
short extension

). (33)
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where N is the number of Daubechies coefficients hk. Here the values of the extension are computed
as

s2n = 2s0− s1, sk = p(k) for k = 2n +1, . . . ,2n+1−2, (34)

with the cubic spline polynomial

p(x) = p0 +(x+1−2n)
(

p1 +(x−2n)
(

p2 + p3 (x+1−2n+1)) , (35)

given by the coefficients
p0 = s2n−1, p1 = s2n−1− s2n−2, (36)

p2 =
2s0− s1− s2n−1−2n p1

2n(2n−1)
, p3 =

s0− s2n−1− (2n +1) p1

2n(2n +1)
− p2, (37)

and the short extension consists of the first N sample values. This yields a “smooth periodic exten-
sion” of the original sample.4 With the extended sample data array, the coefficients a(n)k are computed
as a weighted average, also called a convolution, of the shifted scaling functions:

a(n)k =
k+2n−1

∑
j=k

s′j ϕ( j− k) (k = 0,1, . . . ,2n+1−1). (38)

Step 2 (Recursion): The recursive step of the algorithm is to replace the sum of the scaling
functions (32) by a linear combination of half as many coarser scaling functions ϕ( x

2 −2k) and half
as many coarser wavelets ψ( x

2 −2k) such that

f̃ (x) =
2n−1

∑
k=0

a(n−1)
k ϕ

( x
2
−2k

)
+

2n−1

∑
k=0

c(n−1)
k ψ

( x
2
−2k

)
. (39)

The superscripts (n−1) indicate that the frequency of the respective function is lower than the initial
a(n)-coefficients. The lower coefficients are given by

a(n−1)
k =

N−1

∑
j=0

h j a(n)2k+ j mod 2n+1 (40)

c(n−1)
k =

N−1

∑
j=0

(−1) j+1h j a(n)2k+2N−1− j mod 2n+1 (41)

for k = 0, 1, . . . , 2n−1− 1. In the next recursion step, the sum of the 2n scaling functions in (39) is
again replaced by a sum of half as many slower scaling functions and wavelets, but the wavelet part

4The computation of the smooth periodic extension costs the most running time of the entire algorithm, it has time
complexity T (m) = O(m), where m = 2n is the number of sample values. Since moreover additional values have to be
stored, the memory space to store them is doubled. There exist different averaging methods, notably the “reflection” where
the extended sample data array is given by

s′ = (s0,s1, . . . ,s2n−2,s2n−1︸ ︷︷ ︸
sample data

,s2n−1,s2n−2, . . . ,s0︸ ︷︷ ︸
reflection

,s0,s1, . . . ,sN−1︸ ︷︷ ︸
short reflection

).

This efforts no additional computation time or memory space. The disadvantage, however, is a worse approximation of the
signal function.
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remains unchanged. In this way, the r-th recursion step, with r = 1, 2, . . . , n+1, results in the linear
combination

f̃ (x) =
r

∑
l=1

2n−l−1

∑
k=0

c(n−l)
k ψ

( x
2l −2lk

)
+

2n−r−1

∑
k=0

a(n−r)
k ϕ

( x
2r −2rk

)
(42)

with the coefficients

a(n−r)
k =

N−1

∑
j=0

h j a(n−r+1)
(2k+ j) mod 2n−r+2

c(n−l)
k =

N−1

∑
j=0

(−1) j+1h j a(n−l+1)
(2k+2N−1− j) mod 2n−l+2

(43)

In this way, each recursion step of the algorithm peels off half of the scaling functions and replaces
them by wavelets (Figure 3). After the (n+1)-th recursion, we thus obtain a single scaling function

Figure 3: The “peeling-off” of the scaling functions ϕ and their replacements by wavelets due to the fast wavelet trans-
formation, Eq. (44). This leads to a so-called “multiresolution analysis”, see Definition 4.3 below. The (“low-pass filtered”)
wavelet parts remain unchanged by following iterations, whereas the (“high-pass filtered”) scaling function parts is decom-
posed in the next iteration. Depending on their frequencies, each wavelet part stores coarser information than the foregoing
one. Hence the first wavelet represents the finest information of the signal (sharp “edges” for a rough sketch of an image),
similarly to the human vision system. Cf. Definition 4.3.

and n+1 convolutions of wavelets with different frequencies,

f̃ (x) =
n+1

∑
l=1

2n−l−1

∑
k=0

c(n−l)
k ψ

( x
2l −2lk

)
+

2n−r−1

∑
k=0

a(n−r)
k ϕ

( x
2r −2rk

)
=

2n−1−1

∑
k=0

c(n−1)
k ψ

( x
2
−2k

)
2n−2−1

∑
k=0

c(n−2)
k ψ

( x
4
−4k

)
...

+ c(0)0 ψ

( x
2n

)
+ c(0)1 ψ

( x
2n −2n

)
+ c(−1)

0 ψ

( x
2n+1

)
+ a(−1)

0 ϕ

( x
2n+1

)
(44)
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Example 3.1 With n = 2 and N = 2, consider the sample s = (0,1,2,3). The smooth periodic exten-
sion then gives

s′ = (0,1,2,3︸ ︷︷ ︸
sample

,4,2,1,−1︸ ︷︷ ︸
extension

, 0,1︸︷︷︸
short ext.

). (45)

This gives a(2)0 = ∑
3
0 s′jϕ( j) = 3−

√
3

2 , a(2)1 = ∑
4
1 s′jϕ( j− 1) = 5−

√
3

2 , a(2)2 = ∑
5
2 s′jϕ( j− 2) = 7−3

√
3

2 ,

a(2)3 = ∑
6
3 s′jϕ( j− 3) = 3+

√
3, a(2)4 = ∑

7
4 s′jϕ( j− 4) = 3+

√
3

2 , a(2)5 = ∑
8
5 s′jϕ( j− 5) =

√
3, a(2)6 =

∑
9
6 s′jϕ( j−6) =−1+

√
3

2 , a(2)7 = ∑
10
7 s′jϕ( j−7) = 1−

√
3

2 . Hence the first recursion step yields

(a(1)0 ,a(1)1 ,a(1)2 ,a(1)3 ) =

(
18−5

√
3

8
,
7+5

√
3

4
,
8+3

√
3

8
,1−5

√
3

)
,

(c(1)0 ,c(1)1 ,c(1)2 ,c(1)3 ) =

(
−3

8
,
1−
√

3
4

,
1−6

√
3

8
,0

)
.

Repeating the foregoing calculations give

(a(0)0 ,a(0)1 ) =

(
61−21

√
3

32
,
35−21

√
3

32

)
,

(c(0)0 ,c(0)1 ) =

(
35−11

√
3

32
,−27−3

√
3

32

)
,

and finally,

(a(−1)
0 ) =

(
3
2

)
, (c(−1)

0 ) =

(
13+21

√
3

32

)
.

We thus obtain the wavelet transform

f̃ (x) = − 3
8

ψ

( x
2

)
+

1−
√

3
4

ψ

( x
2
−2
)
+

1−6
√

3
8

ψ

( x
2
−4
)
+0 ·ψ

( x
2
−6
)

+
35−11

√
3

32
ψ

( x
4
−4
)
− 27−3

√
3

32
ψ

( x
4
−4
)

+
13+21

√
3

32
ψ

( x
8

)
+

3
2

ϕ

( x
8

)
(46)

Cf. [8, Ex. 3.21]. �

3.1 Fast Inverse Daubechies Wavelet Transformation

The Fast Inverse Daubechies Wavelet Transformation starts from a wavelet expansion of the form
Eq. (42), or equivalently Eq. (44), and reconstructs the coefficients a(n)k of Eq. (32) such that the
reconstructed function f̃ (x) approximately equals the signal f (x), i.e., f̃ (x) ≈ f (x). The algorithm
starts with the recursion step labeled r = n + 1, i.e., the level (n− r) = (−1), and computes the
coefficients a(n−r+1)

k from the coefficients of the foregoing level, a(n−r)
k and c(n−r)

k , according to the

12



following formulas:

a(n−r+1)
2k =

N−1

∑
j=0

h2 j a(n−r)
(k− j) mod 2n−r+2 +h2 j+1 c(n−r)

(k+ j−N+1) mod 2n−r+2

a(n−r+1)
2k+1 =

N−1

∑
j=0

h2 j+1 a(n−r)
(k− j) mod 2n−r+2−h2 j c(n−r)

(k+ j−N+1) mod 2n−r+2

(47)

Example 3.2 Consider the wavelet expansion from Example 3.1, Eq. (46). In the first step, the
coefficients a(−1)

0 and c(−1)
0 determine the coefficients a(0)0 and a(0)0 via a(0)0 = h0a(−1)

0 + h1c(−1)
0 +

h2a(−1)
0 +h3c(−1)

0 and a(0)1 =−h0c(−1)
0 +h1a(−1)

0 −h2c(−1)
0 +h3a(−1)

0 , i.e.,(
a(0)0 ,a(0)1

)
=

(
61+21

√
3

32
,
35−21

√
3

32

)
.

Repeating this procedure then yields(
a(1)0 ,a(1)1 ,a(1)2 ,a(1)3

)
=

(
18−5

√
3

8
,
7+5

√
3

4
,
8+3

√
3

8
,1−
√

3

)
,

and then(
a(2)0 ,a(2)1 , . . . ,a(2)7

)
=

(
3−
√

3
2

,
5−
√

3
2

,
7−
√

3
2

,
3+
√

3
2

,
3+
√

3
2

,

√
3

2
,−1+

√
3

2
,
1−
√

3
2

)
.

Especially for x = 2, we thus compute f̃ (2) = ∑
7
0 a(2)k ϕ(2− k) = 2, i.e., the value f (2) is reproduced

exactly. This is the case since f is a linear function. In general, however, f̃ only constitutes an
approximation of the signal f . �

4 General approach to wavelets

To define general wavelets, the Fourier transformation is needed, see Definition 4.2 below. More-
over it is used in wavelet theory to prove basic properties of wavelet. The Fourier transformation is
an important integral transformation which is widely used in physics and engineering. A wavelet,
being defined in general with the aid of the Fourier transformation, in turn also gives rise to an inte-
gral transformation, the wavelet transformation. This way, wavelet transformations are sisters of the
Fourier transformation, differing in their integral kernels: the former has a wavelet as integral kernel,
whereas the Fourier transformation has an integral kernel consisting of the trigonometric functions
(or equivalently, of powers of eix). While Fourier transformation expands signals (or functions) in
terms of infinitely extended sines and cosines (or complex exponentials), wavelet transformations use
wavelets, “small waves”, that have their energy concentrated around a point in time or space and
usually are finitely extended (“have compact support”).

Therefore wavelet transforms are well localised in time or space in contrast to Fourier transforms
which are not localised at all. Because of this property Fourier analysis is very well suited for pe-
riodic, time/space-invariant or stationary signals, but naturally not for aperiodic, time/space-varying,
transient signals. The two parameter dependency of the wavelet transform makes it superior, since
scale and position are varied allowing simultaneous time and frequency analysis. The wavelet trans-
formation is thus similar to a musical score, which tells the musician what note when to play, while
the Fourier transformation hides the temporal localisation hidden inaccessibly in the phases.
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4.1 The Fourier transformation

Definition 4.1 Let f ∈ L2(Rn). Then its Fourier transform f̂ := F f ∈ L2(Rn) is defined as the
function

f̂ (y) =
1√
2π n

∫
Rn

f (x)e−iy·x dx. (48)

(Here y · x = ∑
n
1 y jx j denotes the inner product of the vector space Rn.) The mapping F : L2(Rn)→

L2(Rn), f 7→ f̂ , is called Fourier transformation. �

There is a lot to say about the Fourier transformation, cf. [1]. We restrict ourselves here mention-
ing that the Fourier transformation F is a unitary linear mapping F : L2(Rn)→ L2(Rn) on the func-
tion space L2(Rn), where “unitary” means that F preserves the length ‖ f‖=

√
〈 f , f 〉 of f ∈ L2(Rn).

Therefore, the Fourier transformation in fact is just a “coordinate change”, similar to a reflection of
basis vectors in Rn. It satisfies F 2 f (x) = f (−x) and F 4 f (x) = f (x), in other words F 4 = I where
I denotes the identity on L2(Rn). Hence the Fourier transformation is an “isometry with period 4”. A
reflection in Rn, in comparison, is an “isometry with period 2”, since a reflection applied twice yields
the identity.

From the point of view of physics or engineering, the Fourier transformation changes the repre-
sentation of a function, or “signal”, from the time or space domain into the frequency or wavenumber
domain, respectively, and vice versa. Therefore, especially in the theory of signal processing it has
invaluable relevance, since with it a signal f (t) in the time domain can be represented as f̂ (ν) in the
frequency domain where it may be filtered to a given frequency range.

4.2 Basic properties of wavelets

Definition 4.2 A wavelet ψ is a function ψ ∈ L2(Rn) such that its Fourier transform ψ̂ = Fψ satis-
fies

Cψ := (2π)n
∫
R

|ψ̂(tx)|2

|t|
dt < ∞ (49)

for almost all x ∈ Rn. This condition is often called the admissibility criterion. �

A direct consequence of Eq. (49) is that for a wavelet we always have

0 = ψ̂(0) =
∫
Rn

ψ(x)e−2πi·0·x dx =
∫
Rn

ψ(x)dx. (50)

Thus, a wavelet has the same volume above the x-axis as below the x-axis. This is where the name
wavelet, derived from French ondelettes (little waves), has originated.

Definition 4.3 (Multiresolution analysis) [6, §4.5] A sequence {Vj} j∈Z of closed subspaces of L2(Rn)
is a multiresolution analysis, or multiscale analysis, if the following six properties are satisfied:

f (x) ∈Vj ⇔ f (x−2 jk) ∈Vj ∀ j ∈ Z, k ∈ Zn, (51)

Vj ⊂Vj−1 ∀ j ∈ Z, (52)

f (x) ∈V0 ⇔ f
(
2− jx

)
∈Vj ∀ j ∈ Z, (53)

lim
j→+∞

Vj =
+∞⋂

j=−∞

Vj = {0}, (54)
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lim
j→−∞

Vj = closure

(
+∞⋃

j=−∞

Vj

)
= L2(Rn). (55)

∃ϕ ∈V0 such that {ϕ(x− k)}k∈Zn is a Riesz basis of V0. (56)

A Riesz basis ( f j) j∈J of a Hilbert space H is the image of a Hilbert basis (e j) j∈J of H under an
isomorphism A : H →H . (Note that A is not necessarily an isometry.) A family (e j) j∈J of vectors
e j ∈H in a Hilbert space is called Hilbert basis if span{e j : j ∈ J} is dense in H , i.e., any vector
x ∈H can be approximated arbitrarily close by a linear combination of the vectors e j. The function
ϕ is called scaling function or father wavelet. �

With a Riesz basis, a vector x ∈H is therefore uniquely decomposed in a series

x = ∑
j∈J

α j f j, where ∑
j∈J
|α j|2 < ∞. (57)

Furthermore, 〈x, f ∗j 〉 where f ∗j = (A∗)−1e j is the dual basis of f j, being itself a Riesz basis. The two
systems ( f j) and f ∗j ) are said to be biorthogonal. Hence multiresolution analysis leads to the concept
of orthonormal wavelets, as well as of biorthogonal wavelets, as we will see below.

Condition (53) is the essential requirement implying multiresolution as the increment in informa-
tion by going from a fine scale approximation ( j) to a coarser resolution approximation ( j+1). Here

ψ(2x) ψ(x) ψ( x
2 )

Figure 4: Dilations of a wavelet ψ(x) ∈ V0. If condition (53) is satisfied, then ψ(2x) ∈ V−1 and ψ( x
2 ) ∈ V1. In a

multiresolution analysis, V−1 ⊃V0 ⊃V1.

the factor 2 j is the dilation which stretches the function f with respect to the level j = 0 (Figure 4).
Condition (51) implies another feature of multiresolution analysis, i.e., invariance of V0 under integer
translations, f (x) ∈ V0 ⇔ f (x− k) ∈ V0. Finally, condition (56) guarantees that for each j ∈ Z, the
functions

ϕ jk(x) = 2− j/2
ϕ(2− jx− k) (k ∈ Zn) (58)

form a Riesz basis for Vj. In particular, if ϕ0k(x) = ϕ(x−k) is an orthonormal basis of V0, then ϕ jk is
an orthonormal basis of Vj [3, §5.1].

In the language of multiresolution analysis, Vj is thus the closed subspace of L2(Rn) spanned by
the basis 2− j/2ϕ(2− jx− k), k ∈ Zn. Analogously, the orthogonal complement Wj of Vj in Vj−1, that
means

Vj⊕Wj =Vj−1, (59)

has a Riesz basis 2− j/2ψ(2− jx− k), k ∈ Zn. In this light, the constructions of the wavelets packets
we will consider later on appears as a change of basis inside each Wj. We have Wj⊥Wl if j 6= l, and it
follows

Vj =Vm⊕
m− j−1⊕

l=0

Wm−l for j < m. (60)

By (54) and (55) this implies L2(Rn) =
⊕

j∈ZWj. Thus, a multiresolution analysis yields a decompo-
sition of L2(Rn) into mutually orthogonal subspaces. The spaces Wj inherit the scaling property (53)
from the spaces Vj, i.e.,

f (x) ∈Wj ⇔ f (2 jx) ∈W0. (61)
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Therefore, once a wavelet ψ is known such that ψ0,k = ψ(x− k) with k ∈ Zn forms a Riesz basis, or
even an orthonormal basis, of W0, then for each j ∈ Z the functions ψ j,k = 2− j/2ψ(2− jx− k) with
k ∈ Zn form a Riesz basis or an orthonormal basis, respectively, of Wj, and (ψ j,k) with k ∈ Zn, j ∈ Z
forms a respective basis of L2(Rn). Such a wavelet ψ can be constructed from the scaling function ϕ

by simple procedure using the following properties of ϕ and W0.
Since ϕ ∈ V0 ⊂ V−1 and the ϕ−1,k form a basis in V−1, we have ϕ = ∑k∈Zn hkϕ−1,k where the

constants hk ∈ C are determined by

hk = 〈ϕ,ϕ−1,k〉 for k ∈ Zn. (62)

Then we can write either

ϕ(x) =
√

2 ∑
k∈Zn

hkϕ(2x− k), or Fϕ(y) =
1
2 ∑

k∈Zn

hke−iky/2 Fϕ

( y
2

)
, (63)

where convergence in the series holds in L2-sense. The last formula can be rewritten as

Fϕ(y) = m0

( y
2

)
Fϕ

( y
2

)
, where m0(y) =

1
2 ∑

k∈Zn

hke−iky/2. (64)

In case that ϕ provides an orthonormal basis, we have ∑k |hk|2 = 1, and m0 is a 2π-periodic function,
and [3, Eq. (5.1.20)]

|m0(y)|2 + |m0(y+π)|2 = 1 a.e. (65)

For the one-dimensional case n = 1 and for a finite number N of coefficients hk it can be proved
[3, Theorem 5.1.1] that for a multiresolution analysis a wavelet ψ can be constructed from ϕ by the
formula

Fψ(y) = e−iy/2m̄0

( y
2
+π

)
Fϕ

( y
2

)
(66)

or equivalently
ψ(x) =

√
2 ∑

k
(−1)k−1h2N−k−1ϕ(2x− k) (67)

The wavelet ψ is unique up to a phase change and a shift by an integer.

4.2.1 Wavelets and subband filters

Multiresolution analysis in dimension n = 1 leads naturally to a hierarchical and fast scheme for the
wavelet coefficients of a given function. Suppose that we have computed, or given, the inner products
of a signal f with the wavelets ϕ jk at some given fine scale. By rescaling either our units or the
function f we may assume that the label of this fine scale is j = 0. Eq. (67) can be rewritten as

ψ = ∑
k

gkϕ−1,k (68)

where gk = 〈ψ,ϕ−1,k〉= (−1)kh2N−1−k [3, Eq. (5.1.35)]. Consequently,

ψ jk = 2− j/2
ψ(2− jx−k) = 2− j/2

∑
l

gl21/2
ϕ(2− j+1x−2k− l) =∑

l
glϕ j−1,2k+l(x) =∑

l
gl−2kϕ j−1,l(x),

hence 〈 f ,ψ1,k〉 = ∑l ḡl−2k〈 f ,ϕ0,l〉, i.e., 〈 f ,ψ1,k〉 is a convolution of the sequence (〈 f ,ϕ0,l〉)l∈Z with
(ḡ−l)l∈Z, retaining only the even samples. Similarly,

〈 f ,ψ j,k〉= ∑
l

ḡl−2k〈 f ,ϕ j−1,l〉. (69)
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Therefore, also 〈 f ,ψ j,k〉 are given by the convolution with ḡl and decimation (“subsampling”) by
factor 2 with the 〈 f ,ϕ j−1,k〉, which are given by 〈 f ,ϕ j,k〉 = ∑l h̄l−2k〈 f ,ϕ j−1,l〉, cf. [3, Eq. (5.6.4)],
since ϕ jk = 2− j/2ϕ(2− jx−k) = ∑l hl−2kϕ j−1,l(x). Thus the procedure is simply to start from 〈 f ,ϕ0,k〉
and compute recursively 〈 f ,ψ j,k〉 and 〈 f ,ϕ j,k〉 from the respective ( j−1)-value.

The whole process can also be viewed as the computation of successively coarser approximations
of f , together with the difference in information between successive j-levels. From this point of view,
we start with a fine scale approximation f (0) = PV0 f , where PV0 denotes the orthogonal projection
onto the subspace V0, and in each recursion step we decompose f ( j−1) ∈Vj−1 =Vj⊕Wj into f ( j−1) =
f ( j)+q( j), where f ( j) = PVj f ( j−1) is the projection onto Vj, i.e., the next coarser approximation step
in the multiresolution analysis, and q( j) = f ( j−1)− f ( j) = PWj f = PWj f ( j−1) is the information “lost”
in the transition f ( j−1)→ f ( j). Since in the spaces Vj and Wj we have the Riesz bases (ϕ jk) and (ψ jk),
respectively, we have

f ( j) = ∑
k

a( j)
k ϕ jk, q( j) = ∑

k
c( j)

k ψ jk (70)

for some constants a( j)
k and c( j)

k . We thus see that in each recursion step,

a( j)
l = ∑

k
h̄l−2k a( j−1)

k c( j)
l = ∑

k
ḡl−2k a( j−1)

k . (71)

The inverse transformation yields analogously [3, Eq. (5.6.6)]

a( j−1)
l = ∑

k
hl−2k a( j)

k +gl−2k c( j)
k . (72)

In electrical engineering, the formulas (71) and (72) express the analysis and synthesis steps of a
subband filtering scheme with exact reconstruction. In a two-channel subband filtering scheme, an
incoming sequence (a(0)k ) is convolved with two different filters, a low-pass and a high-pass filter.
The two resulting sequences are then “subsampled”, i.e., only the even or only the odd (depending on

a( j−1)

h̄ 2 ↓

ḡ 2 ↓

a( j)

c( j)

2 ↑ h

2 ↑ g

a( j−1)

Figure 5: Subband filtering scheme for an analysis and a synthesis step in multiresolution analysis. The steps are given
in (71) and (72).

the value n in (72)) entries are retained.

Example 4.4 (Cubic spline scaling function) Define ϕ by its Fourier transform

Fϕ(y) =
1√
2π

e−2iy
(

eiy−1
iy

)4

=
1√
2π

(
siny/2

y/2

)4

, (73)

and the corresponding wavelet by

ψ(x) =C0

(
−1

2
ϕ(x+1)+ϕ(x)− 1

2
ϕ(x−1)

)
(74)
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with C0 = 6
√

70
1313 . Then ϕ is the basic cubic spline

ϕ(x) =


1
6 (2−|x|)

3 if 15 |x|< 2,
2
3 − x2(1−|x|/2) if |x|5 1,
0 otherwise.

(75)

This can be seen by noticing that ϕ is the convolution of the triangle function T with itself, i.e.,
ϕ = T ∗T , where T = 1−|x| if |x|5 1 and T (x) = 0 if |x|> 1, and that Fϕ = (FT )2. The scaling
function ϕ and the wavelet ψ look similar to the Gaussian and its second derivative, the “Mexican
hat”, respectively. Note, however, that neither the Gaussian, nor its second derivative have compact
support, whereas φ and ψ are compactly supported. The wavelet ψ clearly satisfies (68) with g0 =C0,
g±1 =−C0/2, gk = 0 for k 6= 0,±1, whereas Fϕ(2y)= (cosy/2)4Fϕ(y), such that Eq. (63) becomes
ϕ(x) = ∑k hkϕ(2x− k), with h0 =

3
4 , h±1 =

1
2 , h±2 =

1
8 , and hk = 0 for k 6= 0, ±1, ±2. The scaling

functions ϕ j,k, given by ϕ j,k(x) = 2− j/2ϕ(2− jx−k), do not form a basis of L2(R), but only a “frame”,
i.e., there exist constants 0 < A5 B < ∞ such that for all f ∈ L2(R) we have

A‖ f‖2 5∑
j,k
|〈 f ,ϕ j,k〉|2 5 B‖ f‖2,

where here A = .73178 and B = 1.77107 [3, §3.3.5.D]. �

4.3 Orthonormal wavelet packets

According to the procedure outlined in [6, §7.2], for a given N ∈ N we will construct a sequence of
functions wl , l ∈N0 which vanish outside the hypercube [0,2N−1]n and which bear the property that
the (n+1)-fold sequence wl(x− k) with l ∈ N0 and k ∈ Zn is an orthonormal basis of L2(Rn). These
functions wl are called “wavelet packets”.

Let be n, N = 1, and define Zn
2N = {0,1, . . . ,2N−1}n as the n-dimensional grid of (2N)n discrete

grid points. Thus, k ∈ Zn
2N is a multi-index k = (k1, . . . ,kn) with k j ∈ {0,1, . . . ,2N− 1}. Especially

for n = 1, we have simply Z1
2N = {0,1, . . . ,2N−1}. Consider then constants hk ∈ C, where k ∈ Zn

2N ,
such that the trigonometric sum m0 : Rn→ C,

m0(y) =
1
2n ∑

k∈Zn
2N

hk e−iky, (76)

(where ky = ∑ j k jy j) satisfies the conditions

m0(0) = 1, m0(y) 6= 0 for y ∈ [−π

2 ,
π

2 ]
n, ∑

k∈Zn
2

m0(y+πk) = 1, (77)

where Zn
2 = {0,1}n denotes the n-dimensional grid of the 2n grid points (0, . . . ,0,0), (0, . . . ,1,0),

. . . , (1, . . . ,1,1), in other words the corners of the unit n-dimensional hypercube. The function m0
is the “minimum phase filter” and is directly related to a “quadrature mirror filter” or “FIR (finite
impulse response)”, and the coefficients hk correspond to its “impulse responses”. Having selected
the coefficients hk, we define the wavelet packets wl by induction on l = 0, 1, 2, . . . , using the two
identities

w2l(x) = ∑
k=Zn

2N

hkwl(2x− k), (78)

w2l(x) = ∑
k=Zn

2N

(−1)|k|+1h̄k∗−kwl(2x− k), (79)

18



where k∗ = (2N−1, . . . ,2N−1) ∈ Zn
2N , and where w0 = ϕ is defined by its Fourier transform

Fϕ(y) =
∞

∏
j=0

m0(2− jy). (80)

The infinite product on the right hand side indeed converges absolutely and uniformly on compact
sets, since by ∑n |hk||k|< ∞ and m0(0) = 1 we have |m0(y)|5 1+ |m0(y)−1|5 1+∑k |hk||sin ky

2 |5
1+C|y| 5 eC|y|. On the other hand, the function ϕ can be constructed iteratively. It is called the
scaling function or father wavelet. Once it is constructed, it can be used by Eq. (79) to obtain the
mother wavelet ψ = w1. By repeating this process, we generate, two at a time, all wavelet packets.
The support of all wl is included in [0,2N−1]n. The central result about the basic wavelet packets is
that the (n+1)-fold sequence wl(x−k) with l ∈N0, k ∈Zn, is an orthonormal basis for L2(Rn). To be
more precise, the subsequence {wl} by taking 2 j 5 l 5 2 j+1 is an orthonormal basis of the orthogonal
complement Wj of Vj in Vj+1.

Example 4.5 (Daubechies wavelets) For n = 1, we chose the nonnegative trigonometric sum

PN(y) = 1− 1
cN

∫ y

0
(sinu)2N−1 du (81)

with the constant cN =
∫

π

0 (sinu)2N−1 du such that PN(π) = 0. Then by a classical result known as
the Fejér-Riesz lemma, there exists a finite trigonometric sum m0(y) = 1

2 ∑
2N−1
0 hke−iky with real

hk such that |m0(y)|2 = PN(y) and m0(0) = 1. For N = 1, for instance, we have h0 = h1 = 1, hence
m0 =

1
2(1+e−iy), and the last condition in (77) reduces to cos2 y

2 +sin2 y
2 = 1; this is the Haar wavelet.

For N = 2, on the other hand, we achieve for h0, . . . , h3 given by (10) the Daubechies D4 scaling
function ϕ and the corresponding wavelet ψ is given by ψ = w1. See [3, §6], [6, §§3.8 & 7.2]. �

4.4 Biorthogonal wavelets

From a practical point of view, signal processing always has to deal with the quantization problem. As
long as we stay in a L2 setting, any orthonormal basis allows a signal to be reconstructed exactly. In
practice, however, the coefficients of a signal decomposition must be quantized. Such approximations
arise from a limited machinery accuracy or are imposed by a desire to compress the data. If we use a
discontinuous wavelet, such as the Haar wavelet, it happens that spurious edges appear and the visual
effects can be annoying.

Although the use of smooth orthogonal wavelets produce better results, they have not completely
satisfied the experts in image processing. One reason is the lack of symmetry. The scaling function ϕ

should be even, i.e., ϕ(x) = ϕ(−x), and the wavelet ψ should be symmetric around x = 1
2 , i.e.,

ψ(1− x) = ψ(x). (82)

A lack of this symmetry in combination with quantization leads to visible defects. The reason is that
quantization errors usually are most prominent around edges in images, and our visual system seems
to be more tolerant of symmetric errors than of asymmetric ones. Moreover, symmetric filters make it
easier to deal with the boundaries of an image. Symmetric filters are also called “linear phase filters”
by engineers, which more pecisely means that the function h(y) = ∑k hke−iky of a filter with filter
coefficients hk satisfies h(y) = e−ily|h(y)| for some half-integer l, which is equivalent hk = h2l−k.

Although certain orthogonal wavelets in fact are symmetric, they do not hold for wavelets with
compact support. The Haar system, being both antisymmetric about x = 1

2 and compactly supported,
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is the only exception to this rule [3, Theorem 8.1.4], but it is not continuous. However, giving up the
condition of orthogonality, we gain a degree of freedom which enables us to incorporate the desired
symmetries together with continuity and compact support property. This leads us to biorthogonal
wavelets, which are implemented in the JPEG-2000 image format.

To introduce biorthogonal wavelets, we first consider the basic one-dimensional case which is
later used to construct two-dimensional biorthogonal wavelets.

4.4.1 The one-dimensional case

Instead of an orthonormal basis derived from a single wavelet, we weaken the definition and use two
wavelet functions ψ and ψ̃ which will determine two nonorthogonal Riesz bases

ψ jk = 2 j/2
ψ(2 j− k) and ψ̃ jk = 2 j/2

ψ̃(2 j− k), (83)

j, k ∈ Z, each dual to each other. The first basis will be used for synthesis, the second for analysis.
This weakening of the definition of a wavelet basis and the flexibility by not requiring, as in the case
of orthogonal wavelets, the equality ψ = ψ̃ allows us to make considerable stronger demands on ψ ,
for instance the requirement (82). To construct the wavelets ψ and ψ̃ , we first seek the values of two
families of “filter coefficients” hk, h̃k having to satisfy

∑
k

hkh̃k+2l = δ0,l,

(
∑
k

hk

)(
∑
k

h̃k

)
= 2, (84)

and determining the scaling functions ϕ̃ and ϕ̃ via

m0(y) =
1√
2 ∑

k
hkeiky, m̃0(y) =

1√
2 ∑

k
h̃keiky (85)

and

Fϕ(y) =
1√
2π n

∞

∏
j=1

m0(2− jy), F ϕ̃(y) =
1√
2π n

∞

∏
j=1

m̃0(2− jy), (86)

cf. [3, §8.3.2]. The same argument as used after Eq. (80) proves that both infinite products converge
absolutely and uniformly. Then the wavelets ψ and ψ̃ are defined by its Fourier transforms

Fψ(y) = m1(
y
2)Fϕ( y

2), F ψ̃(y) = m̃1(
y
2)F ϕ̃( y

2), (87)

with the functions m1(y) = m̃∗0(y+π)e−iy, m̃1(y) = m̃∗0((y+π)e−iy. (The superscript ∗ denotes com-
plex conjugation.)

Therefore, the general procedure is to suppose two trigonometric sums m0 and m̃0, the “minimum
phase filters” or “low-pass filters”, and to derive from them the filter coefficients hk and h̃k and the
wavelets. The great advantage now is that we then can impose desired symmetry properties on m0
and m̃0. Let denote N and Ñ the number of of “taps”, i.e., half of the number of nonvanishing filter
coefficients hk and h̃k, respectively. Then if the filters corresponding to m0 and m̃0, respectively, have
both odd numbers N and Ñ of taps, the trigonometric sums m0 and m̃0 can be written as

m0(y) = e−iny p0(cosy), m̃0(y) = e−iny p̃0(cosy) (N, Ñ odd), (88)

for two polynomials p0 and p̃0 satisfying

p0(x) p̃∗0(x)+ p0(−x) p̃∗0(−x) = 1 (N, Ñ odd). (89)
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This equation is the Bezout problem which is solved in essence by applying Euclid’s algorithm ap-
plied to polynomials being relatively prime [3, Theorem 6.1.1]. For even numbers N and Ñ of taps,
we use the ansatz

m0(y) = e−i(n−1/2)y cos
y
2

p0(cosy), m̃0(y) = e−iy cos
y
2

p̃0(cosy) (N, Ñ even), (90)

for two polynomials p0 and p̃0 being related such that p̃0 solves the Bezout problem

p#
0(x) p̃∗0(x)+ p#

0(−x) p̃∗0(−x) = 1 (N, Ñ even), (91)

where p#
0(x) =

1+x
2 p0(x).

a( j−1)

h̄ 2 ↓

ḡ 2 ↓

a( j)

c( j)

2 ↑ h̃

2 ↑ g̃

a( j−1)

Figure 6: Subband filtering scheme with exact synthesis for an analysis and a synthesis step in multiresolution analysis,
but with analysis filters (h̄k and ḡk) different from the synthesis filters (h̃k and g̃k).

Example 4.6 (Daubechies (Ñ,N) wavelets) Set n= 0 and p̃0(x)= xÑ . Then either N = 2l and Ñ = 2l̃,
and we have

m̃0(y) =
(

cos
y
2

)2l̃
, m0(y) =

(
cos

y
2

)2l l+l̃−1

∑
m=0

(
l + l̃−1+m

m

)(
sin

y
2

)2m
, (92)

or N = 2l +1 and Ñ = 2l̃ +1, and we have

m̃0(y) =
(

cos
y
2

)2l̃+1
, m0(y) = e−iy

(
cos

y
2

)2l+1 l+l̃

∑
m=0

(
l + l̃ +m

m

)(
sin

y
2

)2m
, (93)

see [3, §8.3.4]. In both cases we can choose l ∈ N freely. The result is a family of biorthogonal
bases in which ψ̃ is a spline function of compact support. For each preassigned order l̃ of this spline
function, there exists an infinity of choices for l, corresponding to different wavelets ψ with increasing
support widths, and different wavelets ψ̃ with increasing number of vanishing moments. Note that the
scaling function ϕ̃ is completely fixed by Ñ alone, while m0 and hence ϕ depends on both N and Ñ.
Hence we denote them by Ñϕ̃ and Ñ,Nψ̃ , Ñ,Nϕ , and Ñ,Nψ . Some concrete values of the filter coefficients
hk are listed in Table 2. The resulting scaling function Ñϕ̃ is a basic spline of order (Ñ−1), e.g., the
piecewise constant and piecewise linear spline,

1ϕ̃(x) =
{

1 if 05 x5 1,
0 otherwise, 2ϕ̃(x) =

{
1−|x| if |x|5 1,
0 otherwise,

(94)

respectively, as well as the piecewise quadratic spline

3ϕ̃(x) =


1
2(x+1)2 if −15 x < 0,
3
4 − (x− 1

2)
2 if 05 x < 1,

1
2(x−2)2 if 15 x < 2,
0 otherwise,

(95)

[3, §5.4]. �

21



Ñ = 2 k h̃k hk

0 1
2 + 3

4
N = 2 ±1 1

4 + 1
4

±2 − 1
8

0 1
2 + 22050

215

±1 1
4 + 10718

215

±2 − 3796
215

±3 − 3126
215

N = 8 ±4 + 1228
215

±5 + 670
215

±6 − 300
215

±7 − 70
215

±8 + 35
215

Ñ = 3 k h̃k = h̃1−k hk = h1−k

1 3
8 + 45

64
N = 3 2 1

8 − 7
64

3 − 9
64

4 + 3
64

1 3
8

87318
217

2 1
8 + 190

217

3 − 29676
217

4 + 1140
217

N = 9 5 + 9188
217

6 − 1308
217

7 − 1911
217

8 + 469
217

9 + 189
217

10 − 63
217

Table 2: Filter bank for some biorthogonal wavelets of Daubechies type (Ñ,N). Displayed are the nonvanishing values
[3, Table 8.2]. Note that ∑k h̃k = ∑k hk = 1, so that both h̃k and hk can be multiplied by

√
2 to satisfy (84).

Daub-5/3 Filter coefficients
Ñ = 2 k h̃k hk

0 1 + 3
4

N = 2 ±1 1
2 + 1

4
±2 − 1

8

Daub-9/7 Filter coefficients
Ñ = 6 k h̃k hk

0 +1.115087052456994 +0.6029490182363579
±1 +0.5912717631142470 +0.2668641184428723

N = 2(??) ±2 −0.05754352622849957 −0.07822326652898785
±3 −0.09127176311424948 −0.01686411844287495
±4 +0.02674875741080976

Table 3: Filter bank of the two default wavelets used in the JPEG-2000 standard. Note that the coefficients are scaled such
that ∑k hk = 1, but ∑k h̃k = 2. Cf. http://www.jpeg.org/public/fcd15444-1.pdf, p. 108. Here h̃k is denoted as the “impulse
response of the low-pass synthesis filter”, whereas hk is the “impulse response of the high-pass synthesis filter”.
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Example 4.7 From the same class are the Daub-5/3 and Daub-9/7 wavelets, given by the filter co-
efficient bank in Table 3. The corresponding wavelets are used in the JPEG-2000 standard image
format. They are scaled such that ∑k hk = 1 and ∑k h̃k = 2, and satisfy (84). The filter coefficients
can be easily derived from Sweldens’ lifting scheme5 without referring explicitly to the underlying
biorthogonal wavelets. �

According to [6, §4.7], the function

gN(y) =
1

cN

∫
π

y
(sin t)2N−1 dt (96)

with cN =
∫

π

0 (sin t)2N−1 dt, enables us to define the function m̃0 such that m0(y) m̃0(y) = gN(y). Then

m0(y) m̃0(y)+m0(y+π) m̃0(y+π) = 1. (97)

Hence by (86), the identity (97) is equivalent to the duality condition∫
ϕ̃(x)ϕ(x− k)dx = δ0k. (98)

The function ϕ̃ is even and its support is the interval [−2N,2N]. Moreover, ϕ̃ is in the Hölder space
Cr for sufficiently large N. The wavelets ψ and ψ̃ then are defined by (87). Writing ψ jk(x) =
2 j/2ψ(2 jx− k) and ψ̃ jk(x) = 2 j/2ψ̃(2 jx− k) for j, k ∈ Z, it can be proved that (ψ jk) and (ψ̃ jk) are
Riesz bases dual to each other, i.e., especially 〈ψ jk, ψ̃ j′k′〉 = δ j j′δkk′ . In particular, a signal f ∈ L(R)
can be represented both as

f (x) = ∑
j,k∈Z
〈 f , ψ̃ jk〉ψ jk(x) and f (x) = ∑

j,k∈Z
〈 f ,ψ jk〉ψ̃ jk(x) (99)

The subspaces V0 ⊂ L2(R) spanned by the Riesz basis ϕ(x−k), k ∈Z and Ṽ0 ⊂ L2(R) spanned by the
Riesz basis ϕ̃(x−k), k ∈Z, together with the requirement that f (x)∈V0⇔ f (2 jx)∈Vj and f (x)∈ Ṽ0
⇔ f (2 jx) ∈ Ṽj, generate two multiresolutions (Vj) and (Ṽj) dual to each other. This duality is used to
define the subspaces Wj and W̃j:

f ∈Wj ⇔ f ∈Vj+1 and 〈 f , ũ〉= 0 ∀ũ ∈ Ṽj, (100)

as well as
f ∈ W̃j ⇔ f ∈ Ṽj+1 and 〈 f ,u〉= 0 ∀u ∈Vj. (101)

4.4.2 The two-dimensional case

There are several ways to construct two-dimensional wavelets from given one-dimensional ones. One
possibility is simply taking the tensor product of two one-dimensional wavelet basis as 2-basis, e.g.,
Ψ jk j′k′(x,y) = ψ jk(x)ψ j′k′(y). The resulting functions are indeed wavelets, and (Ψj)j∈Z2 is a Riesz or
orthonormal basis of L2(R2) if ψ jk is a Riesz or orthonormal basis of L(R), respectively. In this basis,
the two variables x and y are dilated and translated separately.

For many applications, however, there is a more appropriate construction in which the dilations of
the wavelet basis control both variables simultaneously. Here it is not the tensor products of wavelets

5http://www.ima.umn.edu/industrial/97 98/sweldens/fourth.html
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which we start from, but the one-dimensional multiresolution analysis Vj ⊂ Vj+1, j ∈ Z. We define
inductively,

V0 =V0⊗V0, (102)

f (x,y) ∈ V j ⇔ f (2 jx,2 jy) = V0, (103)

where V0⊗V0 = closure(span{ f (x,y) = f1(x) f2(y) : f1, f2 ∈ V0}), i.e., V0⊗V0 denotes the tensor
product of vector spaces. Then the V j form a multiresolution ladder . . . , V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . . in
L2(R2) satisfying Eqs. (51) – (56). Since ϕ(x− k) form a Riesz basis for V0, the product functions

Φ j,k(x,y) = 2− j
ϕ(2− jx− k1)ϕ(2− jy− k2), k = (k1,k2) ∈ Z2, (104)

form a Riesz basis for V j. As in the one-dimensional case, we define each W j, for j ∈ Z, as the
orthogonal complement of V j in V j−1, such that V j−1 = V j⊕W j. An interesting observation is made
if we compare this decomposition with the algebraic properties of the spaces given by construction,

V j−1 = Vj−1⊗Vj−1 = (Vj⊕Wj)⊗ (Vj⊕Wj)

= (Vj⊗Vj)︸ ︷︷ ︸
V j

⊕(Wj⊗Vj)⊕ (Vj⊗Wj)⊕ (Wj⊗Wj)︸ ︷︷ ︸
W j

.

Thus W j consists of three orthogonal subspaces with Riesz bases given by ψ j,k1(x)ϕ j,k2(y) for Wj⊗Vj,
ϕ j,k1(x)ψ j,k2(y) for Vj⊗Wj, and ψ j,k1(x)ψ j,k2(y) for Wj⊗Wj. This leads us to define three wavelets,

Ψ
h(x,y) = ϕ(x)ψ(y), Ψ

v(x,y) = ψ(x)ϕ(y), Ψ
d(x,y) = ψ(x)ψ(y), (105)

where h, v, d stands for “horizontal”, “vertical”, and “diagonal”, respectively. Then, for j ∈ Z given,
{Ψh

j,k,Ψ
v
j,k,Ψ

d
j,k : k ∈ Z2} forms a basis of W j, whereas {Ψh

j,k,Ψ
v
j,k,Ψ

d
j,k : k ∈ Z2} j∈Z forms a basis

of L2(R2) =
⊕

j W j. Then the dual scaling function is Φ̃(x,y) = ϕ̃(x) ϕ̃(y), and the dual wavelets are
Ψ̃h(x,y) = ψ̃(x) ϕ̃(y), Ψ̃v(x,y) = ψ̃(x) ϕ̃(y), Ψ̃d(x,y) = ψ̃(x) ψ̃(y), see [6, p. 65].

a(0)

(original)

a(2) c(2)h

c(2)v c(2)d
c(1)h

c(1)v c(1)d

Figure 7: Visualization of the two-dimensional wavelet transform. See Figure 8.

4.5 Malvar-Wilson wavelets

To analyze a given signal, a wide class of algorithms decompose it into a linear combination of time-
frequency atoms. These atoms usually are completely explicit, either given by wavelet packets or
by so-called Malvar-Wilson wavelets. They are part of the general framework of windowed Fourier
analysis. The window is denoted by w and allows the signal s to be cut into “slices” which are
regularly spaced in time w(t− lk)s(t), where k ∈ Z and l denotes the nominal length of the slices.
This section follows the outline given in [6, §6.3].
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−→

Figure 8: An image and its wavelet decomposition. The wavelet components ch, cv, cd emphasize, respectively, the
horizontal, vertical, and diagonal edges. Figure by courtesy of [3].

Let n = 1 and (a j)Z be a sequence with a j < a j+1 and lim j→±∞ a j = ±∞, such that the intervals
[a j,a j+1] provide a partition of the real line R, i.e., R =

⋃+∞
−∞[a j,a j+1]. Write l j = a j+1− a j for the

length of the j-th interval and let α j > 0 be small enough such that l j = α j +α j+1. Then functions
w j ∈C0(R) satisfying the conditions

05 w j 5 1 for all t ∈ R, (106)

w j(t) = 1 if t ∈ [a j +α j,a j+1−α j+1], (107)

w j(t) = 0 if t /∈]a j−α j,a j+1 +α j+1[, (108)

w2
j(a j + τ)+w2

j(a j− τ) = 1 if |τ|5 α j, (109)

w j−1(a j + τ) = w j(a j− τ) = 1 if |τ|5 α j, (110)

are called Malvar windows. It is immediately verified that ∑
+∞
−∞ w2

j(t) = 1 for all t ∈ R. A simple
example of a Malvar window [3, p. 125] is

w j(t) =


sin π

2 v( t−a j+α j
2α j

) if |t−a j|5 α j,
1 if a j +α j < t < a j+1−α j,
cos π

2 v( t−a j+1+α j+1
2α j+1

) if |t−a j+1|5 α j+1,
0 otherwise,

v(x) =


0 if x5 0,
sin2 π

2 x if 0 < x5 1,
1 if 1 < x.

(111)
Malvar windows even can be infinitely differentiable, i.e., w j ∈C∞

0 (R). A Malvar-Wilson wavelet u jk

Figure 9: Malvar windows (left) and a Malvar-Wilson wavelet u jk with k = 8 (right). Figures taken from [6].

for j ∈ Z and k ∈ N0 is then defined as

u jk(t) =
√

2
l j

w j(t)cos
[

π

l j

(
k+ 1

2

)
(t−a j)

]
. (112)
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The ratio k+1/2
l j

determines the number of oscillations in the window w j (Figure 9). The functions u jk

form an orthonormal basis for L2(R).
The Malvar-Wilson wavelets provide a time-frequency analysis, but by a suitable choice of the

Malvar windows, it can result in a time-scale analysis. To this end, we define the window function
w : R→ [0,1] such that

w(x) = 0 if |x| /∈]2
3 ,

8
3 [, (113)

w(−x) = w(x) for x ∈ R, (114)

w(2x) = w(2− x) for x ∈ [2
3 ,

4
3 ], (115)

w2(x)+w2(2− x) = 1 for x ∈ [2
3 ,

4
3 ]. (116)

Then w j(x) =w(2− jx) for j ∈Z are Malvar windows with a j = 2 j, α j =
1
3 2 j, and l j =α j+α j+1 = 2 j.

Denoting θ = 1√
2
F [w(x)eiπx/2], we can define the Lemarié-Meyer wavelet ψ by

ψ(t) = 1√
2
θ(πt). (117)

Then ψ jk(t) = 2 j/2ψ(2 jt− k) for j, k ∈ Z form an orthonormal basis of L2(R). Clearly it is possible
to force w to be an infinitely differentiable function, in which case ψ is a function of the Schwartz
class S (R), cf. [6, §6.4].

Although very appealing, Malvar-Wilson wavelet analysis of signals using dyadic intervals may
produce artifacts. For example, in speech processing a goal is to extract phonemes. However,
phonemes are not subject to the condition that they begin and end on dyadic intervals.

5 Wavelet transformation

The wavelet transformation carries out a special form of analysis by shifting the original signal from
the time domain into the time-frequency domain, or time-scale domain. The idea behind the wavelet
transformation is the definition of a set of basis functions which allow an efficient, and informa-
tive, representation of signals. Having emerged from an advancement in time-frequency localization
from the short-time (or “windowed”) Fourier analysis, wavelet theory provides facilities for a flexible
analysis as wavelets “zoom” into a frequency range.

Definition 5.1 Let ψ ∈ L2(Rn) be a wavelet. Then the wavelet transform of f ∈ L2(Rn) is the function
W f ∈ L2(R+×Rn) given by

(W f )(a,b) =
1√
an

∫
Rn

f (x)ψ

(
x−b

a

)
dx (118)

where ψ̄ denotes the complex conjugate of ψ . The scalar a > 0 is the dilation or scale factor, and
b ∈ Rn is the translation. As a mapping W : L2(Rn)→ L2(R+×Rn), W is called the wavelet trans-
formation with respect to ψ . �

The translation b shifts the wavelet so that W f (a,b) contains local information of f at space location
x = b (or at time t = b if n = 1). The dilation a determines the area of influence, for a→ 0 the wavelet
transformation “zooms” into the location x = b, while a� 0 blurs the space (or time) resolution. The
wavelet transformation W1 with respect to the dilation a = 1 is simply the convolution of f with the
wavelet, W f (1,b) = ( f ∗ψ)(b), see Figure 10. Moreover, |W f (a,b)|5 ‖ f‖‖ψ‖ for each a, b, hence
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f (x) ψ(x)

f (x),ψ(x−b) ⇒ W f (1,b)

f (x),ψ(x− c) ⇒ W f (1,c)≈ 0

f (x)

W f (21,b)

W f (22,b)

W f (23,b)

W f (24,b)

W f (25,b)
S25(y)

Figure 10: (a) The wavelet transformation viewed as a convolution: given a signal f (x) and a wavelet ψ(x), the wavelet
“filters” only those frequencies which are comparable in size with its own frequency, i.e., for an appropriate y it is maximal
whereas for some z it vanishes. (b) Sketch of wavelet transforms on special scales of a signal f (x) with its highest frequen-
cies represented by the wavelet ψ: the upper curve has the highest resolution and shows the finest details of the signal, the
graphs below show its lower frequencies. The “remaining” frequencies are represented by S25(b) =

∫
∞

25

∫
f (x)ψ( x−b

a )dx da
a2 .

W f (a,b) is continuous on R+×Rn [6, p. 209].
With the notion ψa,b(x) =

√
anψ( x−b

a ), often called the wavelet atoms, the Fourier transform of
ψa,b is a weighted dilation of Fψ by 1/a: Fψa,b(y) =

√
ane−2πybFψ(ay). Its center frequency is

therefore y0/a, where y0 denotes the center frequency of the wavelet ψ .
If we introduce, for a given constant Cψ > 0, the Hilbert space L2(R+×Rn, db da

Cψ an+1 ) of func-

tions f : R+×Rn→ C and the inner product 〈 f ,g〉dil =
∫

∞

0
∫
Rn f (a,b) ḡ(a,b) dbda

a2 such that ‖ f‖dil :=
〈 f ,g〉dil < ∞. Then the next theorem shows that the wavelet transformation W is a “partial isometry”.

Theorem 5.2 (Partial isometry) Let ψ ∈ L2(Rn) be a wavelet satisfying Eq. (49) and W : L2(Rn)→
L2(R+×Rn, db da

Cψ an+1 ) its wavelet transformation. For f , g ∈ L2(Rn) we then have

〈W f ,Wg〉dil = 〈 f ,g〉. (119)

Hence W : L2(Rn, dx)→ L2(R+×Rn, db da
Cψ an+1 ) is a partial isometry.

Proof. [3, Prop. 2.4.1]. �

Theorem 5.3 (Inversion Theorem) Let ψ ∈ L2(Rn) be a wavelet and W : L2(Rn)→ L2(R+×Rn)
its wavelet transformation. For f ∈ L2(Rn) we then have the inversion formula

f (x) =
1

Cψ

∫
∞

0

∫
Rn
(W f )(a,b)ψ

(
x−b

a

)
dbda
an+1 (a.e.) (120)

Proof. [6, Theorem B4]. �

We can state Theorem 5.3 in a slightly different form. A direct consequence of Theorem 5.2 and
Fubini’s theorem is that (W f )(a,b) is in L2(Rn) for almost all a > 0, and thus the function

fa(x) =
1

Cψ

∫
Rn
(W f )(a,b)ψ

(
x−b

a

)
db (121)
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is well defined for almost all a > 0. This function fa can be interpreted as the component of f at scale
a for the decomposition given by the wavelet ψ . Then the inversion theorem states that

f (x) =
∫

∞

0
fa(x)

da
an+1 . (122)

Therefore, f is the weighted sum of its components at scale a. In other words, a wavelet transforma-
tion decomposes a signal f into coefficients with respect to a given wavelet ψ . Since all wavelets live
in L2(R), it is interesting to know whether any function f ∈ L2(R) can be approximated by a wavelet.
Indeed, this is the case: The set of wavelets is dense in L2(R).

But this is only one side of the story. Even more important for practical applications, however,
is the fact that for a wavelet ψ satisfying some reasonable conditions concerning decay in time and
frequency [3, Prop. 3.3.2], the set {ψ2 j,2 jn} j∈Z is a Hilbert basis of L2(R), such that

f = ∑
j∈Z

c jψ2 j,2 jn. (123)

This means that every square integrable function can be approximated by dilated and translated ver-
sion of a merely single wavelet. In the end, this property leads to the fast wavelet transformation.

For the higher-dimensional cases n > 1 there exist proposals to define the wavelet transform for
wavelets which are not rotationally symmetric [3, §2.6]. For instance, in two dimensions we can
introduce rotations in addition to dilations and translations, i.e., a third parameter θ besides a and b,
the wavelet transform is given by

W f (a,b,θ) =
1√
an

∫
R2

f (x) ψ

(
R−1

θ
· x−b

a

)
dx, with Rθ =

(
cosθ −sinθ

sinθ cosθ

)
, (124)

where a ∈ R+, b ∈ R2, θ ∈ [0,2π[. The inversion formula (120) then reads

f (x) =
1

Cψ

∫
∞

0

∫
R2

∫ 2π

0
(W f )(a,b,θ)ψ

(
Rθ

x−b
a

)
dθ db

da
a3 (a.e.) (125)

5.1 The image space of a wavelet transformation

Considering the wavelet transformation W : L2(Rn)→ L2(R+×Rn) as defined in (118), is it sur-
jective? In fact, the image H := WL2(Rn) of the wavelet transformation is only a subspace of
L2(R+×Rn), not the entire space. Thus for any F ∈H , we can find a function f ∈ L2(Rn) so that
F =W f . It follows then that

F(a,b) =
∫

∞

0

∫
Rn
(W f )(a′,b′)Wψa,b(a′,b′)

dbda
Cψan+1 =

∫
∞

0

∫
Rn

K(a,b;a′,b′) F(a′,b′)
dbda

Cψan+1 (126)

with

K(a,b;a′,b′) = (Wψa,b)(a′,b′) = 〈ψa′,b′ ,ψa,b〉, ψa,b(x) =
√

anψ

(
x−b

a

)
. (127)

Since Eq. (126) can be rewritten as F(x) =
∫

K(x,y)F(y)dy, the integral kernel K is called a repro-
ducing kernel, and the space H is called a reproducing kernel Hilbert space (rk Hilbert space). An
important rk Hilbert space is the space BΩ of bandlimited functions f ∈ L2(Rn) such that F f has
compact support, i.e., F f (y) = 0 for |y| > Ω. Here the kernel is K(x,y) = sinΩ(x−y)

π(x−y) [3, §2.2]. In
this particular case, there even exists an orthonormal basis en = K(xn,y) with xn =

nπ

Ω
which leads to

Shannon’s formula f (x) = ∑n f
(nπ

Ω

) sin(Ω−nπ)
Ωx−nπ

. However, such special xn need not exist in a general
rk Hilbert space.
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6 Sweldens’ lifting scheme

A different technique to construct biorthogonal wavelets and multiresolution analysis is the lifting
scheme [11]. It works on discrete samples of a signal. The main difference to the classical construc-
tion presented above is that lifting does not rely on the Fourier transform and can be used to construct
wavelets which are not necessarily translations and dilations of a mother wavelet.

The lifting scheme is a recursive algorithm consisting of coefficients ak of the scaling function
and ck of the wavelets, just as in the Daubechies wavelet transform. Its basic idea is to retain in each
recursion step r, as far as possible, only the even samples of the previous step coefficients ak

(r−1)

as approximations ak
(r), and to store the details as wavelet coefficients ck

(r) in such a way that the
original signal can be reconstructed uniquely. As an important example, we consider the special
lifting-based transform

c(r)k = a(r−1)
2k+1 −

1
2

(
a(r−1)

2k +a(r−1)
2k+2

)
,

a(r)k = a(r−1)
2k + 1

4

(
c(r)k−1 + c(r)k

) (128)

Here the details ck measure the deviation of a linear prediction and are used to “lift” the approxima-
tions of the even samples. Expressing this lifting-based transform as high-pass and low-pass filters,
we see that a detail coefficient ck is influenced by three signal coefficients ak of the next finer level,
while an approximation coefficient ak is influenced by five coefficients of the next finer level. The
high-pass (analysis) filter coefficients h̃ and the low-pass (analysis) filter coefficients therefore are
given by

h̃k 0 −1
2 1 −1

2 0

hk −1
8

1
4

3
4

1
4 −1

8

(129)

These are the filter coefficients of the Daub-5/3 wavelet used in the JPEG-2000 image format standard,
cf. Example 4.7.

In general, the implementation of the lifting scheme has some advantages over the implementation
of the usual discrete wavelet transform. First, it reduces the number of floating point operations, in
special cases it can even be implemented with pure integer operations (which are faster than floating
point operations). Second, it allows an in-place calculation, i.e., the original signal can be replaced
by its wavelet transform without using any additional auxiliary memory space.

7 Chirplets and the wavelet transformation

Let H2(R) be the Hardy space of class p = 2 consisting of the functions f ∈ L2(R) whose holomor-
phic extensions f (x+ iy) to the complex upper half-plane P+ = {x+ iy : y > 0} satisfy the condition

sup
y>0

(∫
∞

−∞

| f (x+ iy)|2 dx
)1/2

< ∞. (130)

When this condition is satisfied, the upper bound taken over y > 0 is also the limit as y→ 0. The
space H2(R) is a closed subspace of L2(R).

Hardy spaces play a fundamental role in signal processing. To a real-valued signal f being defined
for all t ∈ R of finite energy, one associates the analytic signal F such that f (t) = ReF(t). By
hypothesis, f ∈ L2(R), hence F ∈ H2(R). Then F(t) = f (t)+ ig(t). (The function g is the “Hilbert
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transform” of f , i.e., g = H f with (H f )(x) = 1
π

∫
∞

−∞

f (t)
x−t dt; since ‖H f‖2 = ‖ f‖2 and H(H f ) = − f ,

H is an L2-isometry of period 4, just like the Fourier transformation.)
A chirp is a function f ∈ L2(R) of the form f (t) = A(t)cosϕ(t) resulting from the corresponding

analytic signal F ∈ H2(R) given by F(t) = A(t)eiϕ(t), where the modulus A and the argument ϕ of
the chirp are real-valued, belong to C∞(R), and satisfy the conditions∣∣∣∣ A′(t)

A(t)ϕ ′(t)

∣∣∣∣� 1,

∣∣∣∣∣ ϕ ′′(t)

(ϕ ′(t))2

∣∣∣∣∣� 1. (131)

The function ω(t) = ϕ ′(t)
2π

then defines the instantaneous frequency of the chirp, and the local pseu-
doperiod is given by its inverse 2π/ϕ ′(t). By conditions (131), both the modulus A(t) and the pseu-
doperiod vary slowly on a scale given by the local pseudoperiod 2π/ϕ ′(t). In the sequel, we will
simply identify f and F for convenience.

A linear chirp is a signal f (t) = ei(αt+β t2), α , β ∈ R, an exponential chirp is a signal f (t) = eikt
,

with n ∈ N, and a hyperbolic chirp is a signal f (t) = eiλ log t , with λ ∈ R.
A chirplet is a windowed portion of a chirp f (t),

ψ j(t) = w j(t) f (t). (132)

For instance, w j may be a Malvar window (yielding chirplets with compact supports), or the Gaussian
window centered at t j.

Example 7.1 Einstein’s theory of general relativity predicts gravitational waves. In fact, they still
have not been observed to date. One of the processes which is expected to generate comparatively
strong gravitational waves is the collapse of binary stars. In this case the analytical description is
given explicitly by a signal

f (t) = (t− t0)−1/4 cos
(

ω(t0− t)5/8 +θ

)
, (133)

where t0 is the time when the collapse occured, θ is a parameter, and ω is a large constant depending
on the masses of the two stars. Since there is great scientific interest in detecting gravitational waves,
such signals are ideal for testing and comparing various time-frequency algorithms. For a signal
(133), both conditions (131) simply become |t− t0| � ω−8/5.

For t0 = 0, a segmentation of the half-line [t0 = 0,∞[ is given by tk = cω−5/8k24/5 where k = 1, 2,
. . . , k0 = c−1/6ω1/3. This means that the size of the segmentation step ranges from ω−1/3 to ω−8/5

when t reaches t0 = 0, which is when the star has collapsed. For further references see [6, §6.11]. �

A wavelet technique proposed by Innocent and Torrésani for detecting chirps, especially described
by (133), bases on a “ridge” detection. The “ridge” is a region near b= t0 where the wavelet transform
of a chirp will be large. Consider the chirp f (t) = A(t)eiϕ(t). Its wavelet transform

W f (a,b) =
1
a

∫
f (t)ψ

(
t−b

a

)
dt (134)

will be small due to cancellations, if the chirp and the wavelet do not oscillate with the same frequency.
By the same reasoning, the wavelet transform will be large if the pseudoperiod 2π/ϕ ′(b) coincides
with the pseudoperiod a of the wavelet. Thus the wavelet transform will be large near the curve
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defined by a = 2π/ϕ ′(b). There is no cancellation on this curve, and the computation of the wavelet
transform goes like this:

W f (a,b) =
1
a

∫
f (t)ψ

(
t−b

a

)
dt ≈ 1

a

∫
| f (t)|

∣∣∣∣ψ( t−b
a

)∣∣∣∣ dt =
1
a

∫
A(t)

∣∣∣∣ψ( t−b
a

)∣∣∣∣ dt.

In view of the first condition in (131), we expect that A(t) does not vary much on the support of the
wavelet, so that 1

a

∫
A(t)

∣∣ψ ( t−b
a

)∣∣ dt ≈ ‖ψ‖1A(b). This argument leads to the following heuristic:
The continuous wavelet transform of a chirp is large in a neighborhood of the curve a = 2π/ϕ ′(b),
where

W f (a,b)≈ ‖ψ‖1A(b).

In the case of chirps (133) generated by the collapse of binary stars, ϕ(t) = (t − t0)5/8 and A(t) =
(t− t0)−1/4, and the ridge is located near the curve

a =
16π

5ω
(t0−b)3/8. (135)

If we take ‖ψ‖1 = 1, then |W f (a,b)| ≈ (t0− b)−1/4 near this curve. Therefore, the ridge depends
only on the two parameters t0 and ω , and locating the ridge in the time-frequency enable to find t0
and to determine the characteristic mass parameter ω .

8 Vision

In cognition psychology, the currently usual model of the visual system, just as of the somatosensory
system (sense of touch), can be essentially understood as a wavelet model. Let us shortly outline
the process of vision. After the retina in our eye has finished its perception processing of an image,
its results are sent to the optic nerve of the brain, an electric cable consisting of millions of wires,
the axons. Many of these wires directly lead to the lateral geniculate nucleus (nucleus geniculatus
lateralis) GL. After the having been processed by the GL, the data go through another strand of axons
to the primary visual cortex V1.

Every neuron taking part of the visual system has its own receptive field, a spatially confined
region in which the presence of a certain stimulus, i.e., a light pattern or spatial changes of light
intensities, alters the firing of the neuron. For instance, many neurons of the GL have a receptive
field as sketched in Figure 11 (a). Depending on magnitude and position of the light pattern, certain

(a) receptive field GL (b) receptive field V1

Figure 11: Light patterns on a screen as receptive fields, stimulating certain neurons. (a) Receptive field of many neurons
in the GL. (b) Receptive field of many neurons in the V1.

neurons are stimulated and increase their rates of electric discharge, measureable by electrodes. In
the V1, however, there are may neurons whose receptive fields consist of lines, Figure 11 (b). In other
words, each region and each (visual!) light pattern in our visual field has certain neurons “watching
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out” for them. About some millions of neurons in the retina and in the GL are taking part of the visual
perception process, in the V1 even some hundred millions of neurons [4, §4.1.5], [5, §3].

In the wavelet model of vision, the image in front of our eyes is the signal, being composed of
various receptive fields. From our own experience, we all know the analogous phenomenon of the
sense of touch, where the receptive fields of the finger tips, for instance, are considerably smaller than
the receptive fields of the back of the hand, so that we can feel the smoothness or coarseness of a
surface much better than with the back of our hand.

What we see is therefore decomposed by our brain into different receptive fields, exactly as signals
in signal processing are decomposed into wavelets. Accordingly, the reaction of a certain neuron is
represented by the “wavelet coefficient”. If a neuron is not stimulated, its wavelet coefficient is zero,
if it is excited strongly and fires often, its wavelet coefficient is large. Just like a wavelet transform,
small receptive fields encode small scales (causing a high resolution, high detail accuracy, good spatial
localization), and large receptive fields encode large scales (giving rise to a bad spatial resolution, but
a well-defined frequency).

8.1 Marr’s program

In the 1970’s, a group led by Marvin Minsky at the MIT artificial intelligence laboratory worked
on artificial vision for robots. The goal was to construct a robot endowed with a perception of its
environment. The first attempts to solve the problem were disappointing to the robot scientists, such
that David Marr, a British expert on the human visual system, was invited to join the group. Starting
from the observation that it was not pure imitation of Nature, such as copying the forms of birds or
the structures of feathers, which led to the construction of aeroplanes, but the understanding of the
laws of aerodynamics governing the flight of birds, he developed a model of vision which underlies
both the human visual system as well as computater vision. He identified four crucial steps of human
vision:

1. The recognition of contours of objects. These are the contours which delimit objects and in this
way structure the environment into distinct objects.

2. The sense of the third dimension from two-dimensional retinal images and the ability to obtain
a three-dimensional organization of physical space.

3. The extraction of reliefs from shadows.

4. The perception of motion in an animated scene.

From this he states that a theory of vision has to answer the following fundamental questions:

1. How can the contours of objects be scientifically defined by the variations of their light inten-
sity?

2. How is it possible to sense spatial depth?

3. How is motion percepted? How do we recognize that an object has moved by examining a
succession of images?

Marr’s working hypothesis was that human vision and computer vision are basing on the same prin-
ciples, so that algorithmic answers to these questions can be tested within the framework of artificial
vision. If such algorithms work for computers, it can be investigated whether and how they can be
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implemented physiologically. For instance, Marr doubts that human neuronal circuits use iterative
loops which are an essential part of existing computational algorithms.

The central question of the actual physiological implementation is the representation of the in-
formation on which the vision algorithms rely on. The kind of representation has significant conse-
quences on the algorithm itself. To take an elementary example, the algorithm to multiply two integers
are considerably different for the representation in the decimal system and the Roman number system.

8.2 Edge recognition by zero-crossings

According to Marr, the image processing in the human visual system has a hierarchical structure
involving several layers of processing. One of the first layers yields the “raw primal sketch” of the
image, furnished by the retinal system as a succession of sketches at different scales in geometric
progression. These sketches are made with lines, and they are recognized by the zero-crossings of the
second derivative of the intensity distribution function f , since they locate the minima and maxima of
the intensity change (i.e., the first derivative of f ). In order to detect intensity changes efficiently, Marr
suggests that the visual system at these stages uses a filter which takes the first and second derivative
of the intensity distribution of the image, and in addition is capable to act on different scales, so that
large filters can be used to detect blurry shadow edges and small filters to detect fine details in the
image. In [7] the wavelet

ψσ (x,y) =−
1

πσ4

(
1− x2 + y2

2σ2

)
e−(x

2−y2)/2σ2
, (136)

is proposed, today called Marr’s wavelet or Mexican hat wavelet. We have ψσ (x,y) = ∆G(x,y)
where ∆ = d2

dx2 +
d2

dy2 is the Laplacian and G is the two-dimensional Gaussian density G(x,y) =
1

2πσ2 e−(x
2+y2)/2σ2

.
Suppose a black and white image is represented by the gray levels f (x,y) in its pixel points

(x,y) ∈ Z2. Then the zero-crossings are given by the zeros of the convolution of f with the wavelet
ψσ , i.e., ( f ∗ψσ )(x,y) = 0. Since ψ is even, ψ(−x,−y) = ψ(x,y), the values of the convolution
f ∗ψσ are, up to a constant, the wavelet coefficients of f , analyzed with ψ . In other words, the
zero-crossings of the image are determined by the vanishing of the wavelet coefficients,

Wψ f (σ ;x,y) = 0, ψ(x,y) =− 1
π

(
1− x2 + y2

2

)
e−(x

2−y2)/2, (137)

The values for σ used in human vision are in geometric progression, and experiments lead the values

σ j =

(
7
4

) j

σ0; (138)

for details and further references see [6, §8.2]. Marr conjectured that the original image is completely
determined by the sequence of curve lines ( f ∗ψσ j)(x,y) = 0. Formulated in this generality, the
conjecture is false, since there is known a counterexample consisting for periodic images covering an
unbounded area [6, §8.3]. However, it is still open today whether the conjecture is true or false for
images of finite extent.

From the point of view of current computer vision research, the Marr-Hildreth approach suffers
from two main limitations. First, it generate responses that do not correspond to edges, so-called
“false edges”, and second, the localization error may be severe at curved edges. Among the currently
mostly used edge detection methods is the Canny algorithm based on the search for local directional
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Figure 12: The Marr, or Mexican hat, wavelet.

maxima in the gradient magnitude, or the differential approach based on the search for zero-crossings
of the differential expression that corresponds to the second-order derivative in the gradient directions.

A remarkable property of the Marr-Hildreth edge detection algorithm is that it always forms
connected closed contours, despite contours leaving the edge of the image. This comes, however, at
the expense of localization, especially for larger values of σ . The Canny edge detection does better
localization, especially for larger values of σ , but the edge segments can become disconnected.

8.3 Mallat’s algorithm

Stéphane Mallat generalized Marr’s approach by replacing the Gaussian by the basic cubic spline θ

with compact support [−2,2], which is given as the convolution θ = T ∗T where T is the triangle
function T (x) = 1− |x| if |x| 5 1, and T (x) = 0 if |x| > 1, cf. Figure 13 (b), and Example 4.4. θ

is called the smoothing function. Let f be the signal function we wish to analyze by the method of

(a)

x1 x2

f (x)

( f ∗θσ )(x)

y = d
dx ( f ∗θσ )(x)

d2

dx2 ( f ∗θσ )(x)

(b)

Figure 13: (a) Mallat’s algorithm. (b) The cubic spline θ = T ∗T and its second derivative θ ′′. Figures taken from [6]
©SIAM

zero-crossing, and define θσ (x) = σ−1θ(σ−1x). Then the zero-crossings are the values of x where
the second derivative satisfies d2

dx2 ( f ∗θσ )(x) = 0 and changes sign. To use the “pyramid algorithm”,
Mallat proposes to stick to the dilations σ = 2− j, j ∈ Z, and to code the signal f (x) with the double
sequence (xq, j,zq, j) where

(a) x = xq, j is a zero-crossing of d2

dx2 ( f ∗θ2− j), and

(b) zq, j =
d
dx( f ∗θ)(xq, j).

In other words, the double sequence contains the (x,y)-values of the local extrema of the first deriva-
tive d

dx( f ∗θ). Some of these local extrema are related to points where the signal f changes rapidly,
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i.e., where |zq, j| � 0, such as x1 and x2 in Figure 13 (a). Only these values are retained, the other
values are ignored. One realization of this idea is to use a certain threshold value zmin > 0, so that
only those zero crossings satisfying |zq, j| � zmin are stored.

Can an arbitrary image, determined by a compactly supported signal function f and filtered by
Mallat’s algorithm, be completely reconstructed? In this generality, the answer is no.

Example 8.1 (Meyer’s counterexample) A counterexample due to Meyer [6, §C] is the signal func-
tion f (t) = f0(t)+g′′′(t), with

f0(t) =
{

1+ cos t if |t|5 π ,
0 if |t|> π ,

g(t) =


−h(−t) if 05 t,
h(t) if π

8 5 t < π

4 ,
0 otherwise,

(139)

where h ∈C∞
0 (R) is an arbitrary function with support in [π

8 ,
π

4 ]. �

However, there are two ways to save Mallat’s algorithm and to guarantee perfect reconstruction. The
first way is to take another smoothing function θ , for instance the Tukey window

θ(t) =
{

1+ cos t if |t|5 π ,
0 if |t|> π .

(140)

With this choice, any real-valued function f ∈ C∞
0 (R)∩ L1(R) can be uniquely reconstructed from

knowing the values (xq,− j,yq,− j) j∈N [6, Theorem C.1].
The second way to let Mallat’s algorithm work correctly is to restrict the set of signal functions f

to be analyzed. If, for instance, f is a step function with an arbitrarily large number of discontinuities,
then it is reconstructed perfectly by the sequence (xq, j,zq, j)q, j∈Z [6, §8.4]. Since in any digital signal
in fact is a step function with finitely many discontinuities, and also any image being processed by
the retina cells consists of step function signals, this restriction even is reasonable in pactice both for
human as well as computer vision.

8.3.1 Mallat’s algorithm in two dimensions

Suppose f ∈ L2(R2) is a signal caused by a two-dimensional image. From this we create the increas-
ingly blurred versions at scales σ j = 2− j, j ∈ Z, by taking the convolutions f ∗θσ j , where

θσ (x,y) = θσ (x)θσ (y). (141)

Here θ(·) denotes the basic cubic spline as used above in the one-dimensional case.
Next we consider the local maxima of the modulus of the gradient of f ∗θσ j , i.e., |∇( f ∗θσ j)|(xq,yq),

where ∇ =
(

d
dx ,

d
dy

)
. Here the zero-crossings are given by the points (xq,yq) ∈ R2 where the Lapla-

cian vanishes,
∆( f ∗θσ j)(xq,yq) = 0, (142)

with ∆ = d2

dx2 +
d2

dy2 , and where additionally there exist points (x±(r),y±(r)) on each circle around
(xq,yq) with radius r < ε for some ε > 0 such that

∆( f ∗θσ j)(x±(r),y±(r))≷ 0. (143)

In case of an image given by discrete pixels, this condition is equivalent to the criterion that the
Laplacian of at least one of the eight pixels surrounding the pixel (xq,yq) is negative, and at least one
is positive. The positions (xq,yq) of these zero-crossings, as well as the values of the gradients at
these points, (z1,q,z2,q) = ∇( f ∗θσ j)(xq,yq), are then stored in memory.
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