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Abstract

The basic properties of RSA cryptosystems and some classical attacks on them are
described. Derived from geometric properties of the Euler functionsk-tier function
rays, a new ansatz to attack RSA cryptosystems is presented. Aresulting, albeit inefficient,
algorithm is given. It essentially consists of a loop with starting value determined by the
Euler function ray and with step width given by a functieg(n) being a multiple of the
order org(e), wheree denotes the public key exponent andhe RSA modulus. For
n= pgand an estimate < ,/pq for the smaller prime factop, the running time is given
by T(e,n,r) = O((r — p)Inelnninr).
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1 Introduction

Since the revolutionary idea of asymmetric cryptosystems was born in the 1970’s, due to Diffie
and Hellman [4] and Rivest, Shamir and Adleman [9], public key technology became an in-
dispensable part of contemporary electronically based communication. Its applications range

*This paper is a slight modification of [10]
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from authentication to digital signatures and are widely considered to be an essential of future
applications for e-commerce.

The most popular cryptosystem is RSA. There has been numerous, more or less unsuc-
cessful, attacks on RSA. The strongness of RSA bases on the difficulty to factorize integers
as well as to compute the discrete logarithm. For more details, see e.g. [1, 2, 3, 6]; cf. also
http://www.math-it.org

2 RSA cryptosystem

The RSA cryptosystem, named after its inventors Ron Rivest, Adi Shamir, and Len Adleman
(1978), was the first public key cryptosystem and is still the most important one. It is based
on the dramatic difference between the ease of finding large prime numbers and computing
modular powers on the one hand, and the difficultyfaaftorizinga product of large prime
numbers as well asvertingthe modular exponentiation.

Generally, in a public key system, each participant has bgilibéic keyand aprivate key
which is held secret. Each key is a piece of information. In the RSA cryptosystem, each key
consists of a group of integers. The participants are traditionally called Alice and Bob, and we
denote their public and secret keyRasSa for Alice andPs, S for Bob. All participants create
their own pair of public and private keys. Each keeps his private key secret, but can reveal his
public key to anyone or can even publish it. It is very convenient that everyone’s public key is
available in a public directory, so that any participant can easily obtain the public key of any
other participant, just like we nowadays can get anyones phone number from a public phone
book.

In the RSA cryptosysteneach participant creates his public and private keys with the fol-
lowing procedure.

1. Select at random two large prime numberandg, p # g. (The primes might be more
than 200 digits each, i.e. more than 660 bits.)

2. Computen = pgand the Carmichael functioh(n) = Ilcm(p—1,9—1).

3. Select an integet relatively prime toA (n). (d should be of the magnitude ofi.e.,d 5

A(n).)

4. Computee as the multiplicative inverse af moduloA (n), such thaed= 1 modA(n).
This is done efficiently by the extended Euclidean algorithm.

5. Publish the paiP = (e n) as thepublic key
6. Keep secret the paB= (d,n) as theprivate or secret key

For this procedure, the domain of the messag@s,id-or each participant of a cryptosystem,
the four-tuple(e,d, p,q) € N* is called(individual) RSA key systenThe key parameteg is
also called thencryption exponent the decryption exponenandn the RSA modulus
The encryption of a messagec Z, associated with a public kdy = (e n) is performed
by the functiork : Z, — Z,
E(m) = m® modn. 1)
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The decryption of a ciphertexte Z associated with the private k&~ (d,n) is done by the
mappingD : Zn — Zn,
D(c) = ¢ modn. (2)

The procedure where Alice sends an encrypted message to Bob is schematically shown in
Figure 1. A qualitatively new possibility offered by public key systems (and being unimple-

Public key directory

Alice P, =(e4. ny)
Bob Py = (e, np)

Bob’s public

key Py Cindy P, =(ec, n¢e)
{
Y c= Ey(m) = m% mod ng
@ -
Dy(e)
Alice Bob

Figure 1:Alice sends an encrypted messagé Bob, usinghis public RSA keyPs.

mentable with symmetric key systems) is the procedurdigifal signature How an RSA
cryptosystem enables Alice to digitally sign a message and how Bob can verifyitsigited

by Alice is sketched in Figure 2. As a matter of course, this verification in fact is possible only
if the authenticity of Alice’s public keya is guaranteed such that Bob can assume that it is her
key (and not a third person’s one) which he uses. This guarantee is the job of so-called trust
centers.

Public key directory
Alice Py = (e, 1) Alice’s public
Bob Py = (eg, np) key‘g
Cindy P. = (ec, ne) A
4 {
c= Dy(m) = m™* mod n,
<> >
| G)
Alice Bob

Figure 2: Alice sends a digitally signed message to Bob; Bob uses Alice’s public key to decrypt the
message and to verify this way that Alice has signed it with her private key.

The correctness of RSA, i.e., the fact tkaandD define inverse functions df, (Do E =
E oD =idg,) relies on the simple fact that

m*d=mmodn  forme Zn, ©)

which is immediately proved by the corollary of Carmichael A.7, p. 18. For details see, e.g.,
[1, 2, 3].



Remark 2.1 Often one finds the definition of RSA cryptosystems based on the Euler function
¢ rather than on the Carmichael functian cf. [3]. However, sincep(pg) = (p—1)(q— 1),

both function valuesp(pg) and A(pq) share the same divisors. Therefore, a possible key
parameted relatively prime toA (pq) is also relatively prime te(pg), and vice versa. Only

the resulting counter keg may differ. To be more precise, any possible RSA key pair of

a system based on the Euler function is a possible key pair with respect to the Carmichael
function, whereas the reverse is not generally true. (Proof: Sirfog|¢(n), the equality

ed= 1 mode¢(n) impliesed =1 modA(n).) Using the Euler functiorp, the correctness of

RSA is shown with the Euler theorem A.2 on p. 16, instead of the corollary of Carmichael.

2.1 Properties of an RSA key system

Theorem 2.2 Let p, gc N be two primes, @ > 1, p# g. Then the numbery of all possible
key pairs(P,S) = ((e, pa),(d, pg)) is given by

Vpg = @(A(P)). 4)
The (trivial) keys with e= d = 1 and with e=d = A(pq) — 1 are always possible, and
(P—1(9-1)
2< vpg < . 5
P4 ged(p—1,9—1) ®)

Proof. Sinceed= 1 modA (pq), without restriction to generality we have<0e,d < A(pQ).
Moreover, gcdd, A (pq)) = gcd(e, A(pa)) = 1, because for an arbitrary integeewith gcd(a,
A(pag)) > 1 there exists nd € N such thatab= 1 modA(pq). Thereforee d € L3 (pg- N
turn, to anya e Zj{(p@ there exists an integérsuch thaab =1 modA(pg), sinceZi(pq) is a
group. But the order c%j(pq) is exactlyp(A(pQ)).
It is clear that 21 = 1 modA(n), soe=d = 1 are always possible as key parameters.

If e=d=A(pqg) — 1, we haveed = 1%(pqg) — 2A(pq) + 1 = 1 modA(pg), soe andd are
always possible, too. By (47},(pq) is even and (byq = 6) greater than 2, sgpq > 2. The
maximum number of elements on the other hanti(isg) — 1. O

The plot of all possible RSA key parametéesd) reveals general symmetries in tfeed)-
plane. First we observe that®f= (e,n), S= (d,n) is a possible RSA key pair, then trivially
alsoP’ = (d,n), S = (e,n) is possible, becaussl = de= 1 modA (n). Furthermore, ied =
1 modA(n) and 0< e,d < A(n)/2, then

€ =1(n)—¢, d=A2(n)—d (6)
satisfyA(n)/2 < €,d’ < A(n) as well as
éd’ = 2%(n) — A(n)(e+d) +ed=edmodA(n).

Therefore P’ = (€¢,n) andS = (d’, n) are possible RSA keys, too.
To sum up, all possible RSA key parametéedd), plotted in the square lattid®, A (n) —
1]? c N2 with edges ranging from 0 tb(n) — 1, form a pattern which is symmetric to both the
principal and the secondary square diagonals, see Figure 3. Thus, the region
U={(ed)e[0,A(n)—1%:0<d<min(e,A(n) —e)} (7)

contains all information to generate the rest of the square lattice by reflections at the main
diagonal {l — €) and at the secondary diagonal (6).
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Figure 3:Plots of the possible RSA key parameter pagsl) € [0,A(n) — 1]2 for different primesp
andq, represented as points in tted)-plane. For the first plotp = 11 andq = 83, for the second one
p =19 andg = 131. The shaded regionlisas given by (7).

2.2 Classical RSA attacks

There are several specific methods to break an RSA cryptosystem. The initial situation for an
attack is that an eavesdropper knows the publiciRey (e ,n) and the encrypted message
For details see, e.qg., [1] and [&Z7].

2.2.1 Factorization of the RSA modulus

If the eavesdropper succeeds in finding the factorizatienpq of n, knowinge he can easily
computed. But factorization of numbens = pqwith

p,q > 107% (8)

(hencen > 10°%, j.e., n has length more than about 1320 bits), is difficult with current tech-
nology, if p andq differ enough,

[p—gqf > 10, 9)

Otherwisen can be factorized efficiently by exhaustive search of two intege@ndn_ satis-
fying n=n2 — n2, beginning ah; = [,/n] andn_ = 0. These two integers then necessarily
obeyn, = 9.

It can be proved that, knowing the public kés;n), factorizing the RSA modulus is as
difficult as finding the secret ke, n), see [257.2.5].

Factorization is the most efficient known attack on RSA. The fastest known factorization
method, thenumber field sievef John Pollard in 1988, yields running times for a 10 GHz
computer as given in Table 1.

2.2.2 Chosen-plaintext attack

The eavesdropper systematically encrypts all messageih Bob'’s public keyPs until he
achieves the ciphertext This attack is efficient if the set of messagess small or if the



magnitude of the number bits  operations CPU time

n~ 10°° 167 14-10° 14 seconds
n~ 10 250 9-10'? 2.5 hours

n ~ 10100 330 23.1015 26.6 days

n~ 102 665 12-10°® 3.8 mioyears
n~ 10300 1000 15-10° 4.9-10%years

Table 1:CPU times for factorizing of numberson a 10 GHz computer.

messagenis short.

“Pad” each message such that its size is of the magnitude of the
modulus. Use “probabilistic encryption,” where a given plaintext (20)
is mapped onto several ciphertexts.

2.2.3 Chosen-ciphertext attack

There is a similar method, the chosen-ciphertext attack, which can be applied fidgwa
document with his private key. The eavesdropper receiving the cipherext wishing to find
the decryptiorm = ¢ mod n chooses a random integeand asks Bob to digitally sign the
innocent-looking message="s°c modn. From his answem= & it is easy to recover the
original message, because= m/s modn.

Never sign unknown documents; before signing a document, al-

ways apply a one-way hash function to it. (11)

2.2.4 Message iteration

Let bec; € Zn, be iteratively defined as
Co=m, ¢ =c’ , modn i=12...).

In fact, ¢ = m€ mod n, andc; = cis the ciphertext. The smallest indkexvith ¢, 1 = ¢, is the
iteration exponent or period of,, cf. definition 3.3: it exactly shows (!) the original message,

Ck=m.

Such a period uniquely exists, it is the order @moduloA (n), k = ord, ) (€), cf. (15). Thus
itdividesA (A (n)) ande(A(n)). To avoid an efficient attack by iteratioh(A (n)) and the order
of e with respect tol (n) have to be large,

A(A(n)), ordy ) (€) > 107, (12)

This condition is satisfied for so-called “doubly safe primpsindg: A prime pis doubly safe
if both (p—1)/2 and(p— 3)/4 are primes. For instance, 11, 23, 47, 167, 359 are doubly safe
primes. A doubly safe primp # 11 always has the form 24- 1, or p = —1 mod 24. For two

doubly safe primep, g, we have (pg) = 2 2% 91 and thereforél (A(pq)) = lem(2, 22,

G =487 52— (p-3)(a-3)/8.



2.2.5 Broadcast decryption by the low-exponent attack

In general, it may be convenient to use a small public key pararastgsh that the encryption

of a message is easy to compute (for instance for a small chip card). However, suppose Alice
sends the same messagd tifferent participants whose public keys de= (e n;) where
then;'s are relatively prime to each other ahdt e; to emphasize, the public keys have the
same encryption exponeet If an eavesdropper receives theiphertextsci = m® modn;, he

can easily comput€ = ¢/ modn; ---n; by the Chinese remainder theorem. But if the product
ny---n is great enough, this is the samecas- . This equation is invertible, vizm = v/c/,

and the original message is computed. To avoid this attack, each pair of publig keys, n;)

P, = (ej,n;) and any broadcast messagenust satisfy

le#e or P nfi>nn] (13)

2.2.6 Broadcast decryption by the common modulus attack

If a plain textm is encrypted twice by the RSA system using two public kBys- (&,n),

i = 1,2, with a common modulus and gcde;,e;) = 1, thenm can be recovered efficiently
from the two ciphertexts; andc,, each of which given bg; = m® modn. This is done by the
following procedure.

1. Computexy, x» satisfyingxie; + xoe; = 1 by the extended Euclidean algorithm, where
the indices are chosen such tkat 0.

2. Determiney satisfying 1= yc, + kn by the extended Euclidean algorithm.
3. Calculatecy®ty=*2 — this is the plain text!

The reason is that*ty 2 = ¢;*t ¢*2 = m&t2®2 = mmodn. E.g., let beP, = (3,493) and
P, = (5,493), and the corresponding ciphertexts= 293 andc, = 421. Then the extended
Euclidean algorithm yieldg; = 2 andx, = —1, and thug/ = 89 andk = —76 (such that 89
421 — 76 - 493 = 1); finally, 293 - 89! = 67 - 89 = 5963= 47 modn, i.e.m = 47 is the
plaintext. In fact, 493= 17 - 29, andS, = (17, 29, 75),S = (17, 29, 45), anth = c{°> = c3°
= 47 mod 493.

Therefore, to avoid common modulus attacks, a sender should regard:

Never send identical messages to receivers with the same modu-

lus and relatively prime encryption exponents. (14)

3 The Euler function ray attack

3.1 Thew-function and the order of a number modulon

Definition 3.1 Let ben e N, n> 1, andZ;, the multiplicative group modula. Then theorder
ord,(m) of me Z;; is given by

ordy(m) =min{k e N: k> 0, m=1 modn}. (15)

If gcd (m,n) > 1, orch(m) = co.



Let (m) denote the subgroup @, generated byn. E.g.,(2) = {1, 2, 4} in Z7, and ord(2) =
3. Note thatp(7) = A(7) = 6.

Lemma 3.2 Let be mn € N, withgcdm,n) = 1 and m< n. Then
ord,(m) | A(n). (16)
Moreover,
[logy,n] < ordh(m) SA(n) <n—1. (17)

Proof. With Carmichael’s theorem A.4 and with the Lagrange theorenj33] equation (16)
is deduced.

Let a = ordy(n). Sincem > 1, we havem? > n to obtainm = 1 modn. This implies
a > log,,n. The upper limits follow from the relations (55) and (16). O

Definition 3.3 Letbem,n,e€ N, n> 1, and define the sequenag,(c1, Cy, .. .) iteratively by
Co=m, c=c ,modn (i=12,...). (18)

Then the smallest = 1 such thaty = ¢p is called(n, e)-iteration exponent(®, e, m) of m. It
is the period of theycle(co, C1, .. ., Csnem)—1) to Whichmbelongs. A cycle with period one
is a fixed point.

Lemma 3.4 Let be em,n and the sequende&yp,c1,Cy,...) as in definition 3.3. Let moreover
be e relatively prime td.(n). Then then, e)-iteration exponent(®, e, m) satisfies

s(n,e m) | A(A(n). (19)
Proof. Note that for the sequence (18) we haye- m modn. Fors(n,e,m) we thus have
me"*"™ = i modn. (20)

By (54) we havee™™®™ —= e mod A(n), which implies by definition 3.3 that ofeh)(e) =
s(n,e,m). Relation (16) yields the assertion. O

Example 3.5 Let bee=7,n=55=5-11. Then we have (55) = 20, andA (A (55)) = 4.
Denotingcy = 51, we obtain
1 = 51"mod55=6
¢, = 6" mod55=41
c3 = 41" mod55=46
C4 = 46/ mod55=51=co
Hence, the period of the cycle which 51 belongs te(is e,m) = 4. Note by (19) that this is
the maximum value. Analogously, there are the following cycles.
9 fixed points 0), (1), (10), (11), (22), (34), (44), (45), (54)
3cyclesof period2 (12, 23), (22, 33), (32,43)
10 cycles of period4 (2,18,17, 8), (3,42,48,27)
(4,49,14, 9), (5,25,20,15)
(6,41, 46,51), (7,28,32,13)

(16, 36, 31, 26), (19, 24, 29, 39)
(30, 35, 40, 50), (37, 38, 47, 53)
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Definition 3.6 Let bem,n € Z, n = 0. Then we define the function
ord,(m) ifged(mn) =1,

@m(n) = { 0 if ged(m,n) # 1. D

It is obvious thatm®(™ = 1 modn for anym,n € Z, n > 0 (since this is the definition of the
order function). Substituting by wm(n) immediately yields

m®n(@n(M) — 1 mod wm(n). (22)

Here “a = b mod 0” has to be understood as a congruencg,ine. as ‘a = b.” By iteration,
we obtain the cascading-equation

m' ™ — 1 model Y(n),  wherer > 1. (23)
wherew,ﬁqr)(n) = Om(®m(...(wm(n))...)) denotes the-fold composition ofwn,.

Theorem 3.7 Let be de,n € N, such that > 1, gcd(e,n) = 1, and d-e = 1 modA (n). Then
we(we(N)) >0, and
d = e?(®(M)~1 mod @e(n). (24)

Proof. First we note by (16) thabe(n) | A(n). Thereforede= 1 modA(n) implies
d-e=1modae(n). (25)

(If de—1 =kA(n) for ak € Z, thende— 1 =K we(n), wherek’ = kA (n)/we(n).) If we had
now we(we(N)) = 0, thene would dividewe(n) and hencel (n): But then there would be nd
with de= 1 modA(n). Hence,we(we(n)) > 0. Moreover, by the cascading-equation (22)
we have

e®(@e(M)~1. e — 1 modawe(n). (26)

Equation (24) follows immediately from (25) and (26). O
Example 3.8 Let ben =221 ande= 11. Thenw;1(221) = 48, 011(48) = 4, hence
d=1123=35mod 48

Therefore, the possibleé < 221 ared = 35, 83, 131, 179. In fact, 22% 13- 17, andA (221)
= 48; this means that 2B5= 1 modA(221), ord = 35.

The two shoulders on which Theorem 3.7 rests are equations (25) and (26). They can be
extended to analogues for the following corollary.

Corollary 3.9 Letbe en,a,be Nsuch that n>1andgcd(e,n) =1, as well ast (n) | we(awe(N)).
Then the integer

d = eP2=(a%(M)~1 modawe(n) (27)
satisfiedle= 1 modawe(n), and for any number ra Z, we have
m™ = mmodn. (28)

If the integer a is such thabe(awe(n)) | A(n), then the unique & A (n) with de=1 modA (n)
is related tod by B
d = d modawe(n). (29)



Proof. Substitutingn by awe, from e?»(" = 1 modn for anym € Z we deduce thag®e(ae(n)
= 1 modaawe(n). Especially, with (27) we have

d-e=eP®@)~1. e — 1 modawe(n). (30)

If A(n) | we(ame(n)), we havememodae(n) modn = mt Moda®e(n) modn = mt M4 modn
= mmodn. (Note thatd (n) enters the scene in the second last equation to fulfill the equation
for all m!) In turn, if we(awe(n)) | A(n), thende= 1 modA(n) impliesde = 1 modawe(n);
thus (29) follows from (30). a

Example 3.10 Let ben = 143 ande = 47. Thenws7(143) = 20, and witha= 2, b= 3, we
have 3v47(40) = 12, hence
d =47 = 23 mod 40

Thereforemfd = m'%8! — mmod 143. In fact, 143= 11- 13, andA (143 = 60; this means
that 47.23 =1 modA(143), ord = 23.

Remark 3.11 Given two relatively prime integersandn, corollary 3.9 enables us to choose
an (almost) arbitrary multiple of the order a(d) > O to find an integed being a kind of
“inverse” of e If the multiple is small enough such that it divid&$n), our result supplies a
list of values, one of which satisfiesl= 1 modA (n); if the multiple is also a multiple ok (n),
we can comput@T such thatde = 1 mod aordy(e). In particular, by (47) and (16) the Euler
function is a multiple of bott (n) and org(e).

3.2 Properties of composed numbera = pq

Let bep, g be two primesp # g. Thenn = pqis an integer composed of two primes. Among
the integers less than 50 there are 13 ones composed of two primespqg, whereas less
than 100 there are 30 ones, shown in the following tables.

ni 6 10 14 15 21 22 26 33 34 35 38 39 46 51 55
on |2 4 6 8 12 10 12 20 16 24 18 24 22 32 40
An)|2 4 6 4 6 10 12 10 16 12 18 12 22 16 20

ni 57 58 62 65 69 74 77 82 85 86 87 91 93 94 95
o(n) |36 28 30 48 44 36 60 40 64 42 56 72 60 46 72
A(n) |18 28 30 12 22 36 30 40 16 42 28 12 30 46 36

Let us now study the geometric structure of the Euler function.

Theorem 3.12 Let n= pq be a positive integer, composed of two primes p and g withgp
For any integer piin € N satisfying gin < p we then have

o(n) = <pmm—1>< "

Pmin

- 1) : (31)

The inequality is strict, if gin < p, 0.
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Proof. We havep(n) = (p—1) <; — 1) , ande(n) is a function ofp:

gmr:wmzn—p—;+1

Sinced'(p) = —1+n/p? < 0, for fixedn the functiong is strictly decreasing with respect o
aslongap < q,i.e. asn/p? > 1. 0

Geometrically, this result means that in the graplp@f) the point(n, ¢(n)) lies above the
“Euler function ray” (see Figure 4)

fﬁm:(xmm<;0>. (32)

@(n) B(n)

Figure 4:Plot of the Euler functiorp(pq), with p, g prime; also sketched are the rafgsfor p = 2, 3,
5,7,11,13,17, 19, 23.

Theorem 3.13 Let be p, g two primes g q, e an integer with e 1, and n= pg. Moreover
define for ac N the exponentéep, Y%ea € N by

Oen=max{i € N: é < n} = U:ZJ ) Yea=maxi € N: e | a}, (33)
as well as 1
rizé(Ai\/M) with A = p+ g+ Oen. (34)

Then for any integers b, N, r_ <r < porq=r =r,, satisfying
bel'™) =1 modn,  where f(r)=(r—1) (? — 1) : (35)
the Euler function value(n) can be computed by

@(nN) = Yep+ [ F(r)] (36)
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Proof. Note first that real values for. always exist since the term in the square root is positive,
A% > (p+Q)? i.e.A2—4n > (q—p)? > 0. We see thatp—1)(q—1) — (r—1)(n/r—1) =
%(r2 — Ar 4+ n). Solving this quadratic equation with respect tatraightforward calculation
thus shows that the inequalities foare equivalent to the inequalities

0<(p-1)(q-1)—(r—1) (?-1) < Sen, 37)

which means that & ¢(n) — (r — 1) (" — 1) < 8e. On the other handy being the multiplica-

r .
tive inverse ofe’ by the modular equation in (35), we habe= e’ modn for somej € N, in
particular forj = ¢(n) —r. Butif j < den, we haveb = €/, andj = . O

Example 3.14 Let bep=11,q= 13, ande= 7. Thend; 143 = 2, and thus) = 26,r, = 13
+ 1/26. Sor shall satisfy 8 r < 11 or 13< r < 18. Forr = 8, e.g., we have

(r—1) (? - 1) — 7.16.875= 118125;

Since #'8 = 108 mod 143, we achieve by the extended Euclidean algoritha9 = 72
(because % 49-108—37-143), and withy; 49 = 2 we obtain

0(143) = 118+ 77,49 = 120
In fact, p(143) = 10-12. O
Example 3.15 Letbep =3336670033¢g =9876543211, and= 2. Then
n=32954765761773295963
02 = 64, and thus
A=13213213308 r_=3336670008B, r, =9876543305.

Forr =9876543 308, e.g., we have
i—(r—1) (? ~ 1) =32954765748560082656

Since _
2' =7542048005965299043 mad

we achieve by the extended Euclidean algorithm
b=18446744073709551616
and withy, , = 64 we obtain
@(n) =i+ = 32954765 748560082720

O

The following lemma tells us the grade of “coarse graining,” i.e., a step-width that a sys-
tematic and definite search for an appropriate Euler function ray factast use.

12



Lemma 3.16 Let p, q be two primes, g g, e an integer e- 1, and n= pg. Moreover let ¢
andde, be defined as in theorem 3.13 by equations (33) and (34). Then

rp—q> % (38)
2
Moreover, 5
p—r_> % if Sepq< 2(3p—Q). (39)

Proof. By A2 — 4pq = (q— p)? + 2(P+ ) e pq + 82pq We achieve fode pq > 0

ro— %(AJF\/AZ_TW):%<A+\/(q—p)2+2(p+Q)5e,pq+5«§pQ>

66’ pq
5

1 1
> E(A+q— p) = §(2CI+ epq) = 4+

Analogously, by (39) we have(@— p) + %Sequ <q+p,i.e.(q—p)2+2(q+ p)Sepq+ 6§pq >
(0= P)?+4(0q— P)8epq+ 4825 = (A — P+ 28epg)? €.

1
ro— E(A_\/(q—p)2+2(IO+Q)<‘5eﬁpq+5e2:pq)
1
< §<A—\/(q—p)2+4(p—Q)5eﬁpq+45ez,pq)
1 O,
= 5(B8=9+p—20epq) = pP— e,2pq'

3.3 The algorithm

An algorithm to break an RSA cryptosystem is shown below in pseudocode. It is invoked
with the public key(e, n) and the estimatefor the Euler function ray as input parameters and

returns a possible private RSA key parameteorresponding te. If it fails, d < 0 is returned.

long rayAttack ( e, n, r ) {
/I store an array a such that afi] = m"(27) < n:
af0] = e
=1
while ( afj-1] < n ) {
afj] = afj-1] * afj-1];
jtt;
}
delta = O;
while ( e(delta + 1) <= n ) deltat++;
step = delta / 2;
d =0; r =n(1/2);
while (d == 0 && r > 0) {
ord = omega(e,n,r);
if (ord >0) d = euclid( e, ord )[0];
else r -= step;
}

return d;

13



The heart of algorithmmayAttackis the algorithmo(m, n,r) determining an integdrbeing a
multiple of ord,(e) on the basis of corollary 3.9. Both algorithms use the extended Euclidean
algorithmeuclid In detail:

/** returns minimum i >= (r - 1) * (n/r - 1) such that mi = 1 mod n
* returns O if i is not computable, and -1 if the algorithm fails
*

long omega( m, n, r ) {
if ( gedim,n) !'= 1) return O;
else {
i=(@-21*(r-1);
m=m % n;
/I determine b such that b * m"i = 1 mod n:
b = euclid (n, ( Mi % n ) )[1] mod n;
/I determine maximum exponent gamma such that m"gamma divides b:
gamma = 0;
for ( k = alength - 1; k >= 0; k- ) {
if (b>=alk]) {
if (b % alk] == 0) {
gamma += 2°k;
b /= alk];

else break; // not a power of e

}
}
i += gamma,;
if (1i>0&& bl=1){
i = - 1; /I algorithm fails!
} .
return i;
}
}

The classical Euclidean algorithm reads:

/I euclid(m,n) = extended Euclidean algorithm
/I returning x0, x1 s.t. gcd(m,n) = x0 * m + x1 * n:
long[] euclid( long m, long n) {

X[ = {1,0%

u=20,v=1

mNegative = false, nNegative = false;

if (m<0){m = -m; mNegative = true; }
if (n<0){n=-n nNegative = true; }
while ( n > 0 ) {
/I determine q and r such that m = gn +
g=m/nr=m%n;
/I replace:
m=n;n=r
tmp = u; u = x[0] - g*u; x[0] = tmp;
tmp = v; v = x[1] - g*v; x[1] =
}
if ( mNegative ) x[0] = -x[0];
if ( nNegative ) x[1] = -x[1];
return Xx;
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3.3.1 Complexity analysis

First we note that the running timkcig(m,n) of Euclid’s algorithm for two input integers
m,n is given by

Teuctid(M, N) = 10g,[(3— @) - max(m,n)], (40)
where¢ is the golden rati@ = (1+/5)/2, see [5§4.5.3, Corollary L (p.360)]. If we con-
sider, to simplify, the running time as the number of loops to be performed, we therefore we
achieve for the running timé&g,(m,n,r) of the w-function T,(M,n,r) = Tpow(m, [ T(r)]) +
Teuctig(n, MF O modn) + 3 log,,n+ 2 log,n, i.e. [2,§2.12]

To(m.n,r) = log, | f(r)] - (logon)? +log, (3~ ¢)n] +logy,n. (41)
Since the complexityliay(e, pg,r) of the ray Attack algorithm (witm = pq) then is given by

Tray(€, Q1) = 00, Equ(e, PG, 1) + Teuciia(€, @ (€, PG,T)),
and since byo(e, pg,r) < nwe haveTeycig(e, @(e pg,r)) < Teucid(€ PQ), we obtain

r-p
loge Pq

Tray(e, par) < < +1> log, [(3—¢) pq

, 2
H(r—p) <1+ Iogsz(IrgéeSggz P9 >
= O((r—p)Inr-ne-Inpq). (42)

(Note thatf (r) = O(r).)

4 Discussion

In this article a new ansatz to attack RSA cryptosystems is described, basing on geometric
properties of the Euler functions, theuler function rays However, a resulting algorithm
turns out to be inefficient. It essentially consists of a loop with starting value determined
by the Euler function ray and with step width given by a functiasin) being a multiple of

the order ord(e), wheree denotes the public key exponent andhe RSA modulus. For

n= pgand an estimate < ,/pq for the smaller prime factop, the running time is given by
T(e,n,r) =0O((r — p)Inelnninr).

In other words, this attack is queuing up into a long series of failed attacks on RSA. So,
what is gained in the end? First, we achieved a small mathematical novelty, the Euler function
rays, i.e. geometrical properties of the Euler function. To my knowledge they have never been
mentioned before. Second, thefunction has been introduced, being closely related to the
order of a number but being more appropriate for practical purposes. Finally, this trial as
another failure in fact is good news. It seems that e-commerce basing on RSA can go on.

A Appendix

A.1 Euler's Theorem

If nis a prime, the set of all numbers (more exactly: of all residue classes) modubbfield
with respect to addition and multiplication, as is well known. Howeven i§ a composite
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integer, the ring of all numbers modutois not a field, because the cancellation of a number
(more exactly: a congruence) moduldoy any divisord of n also requires the corresponding
cancellation o, and thus carries us from the ring modu®o another ring, namely modulo
n/d. In this cased is said to be a zero divisor of the ring, sindi@ andn = n/d = 0 modn/d.

For instance, fon = 9 the congruence

15=6 mod 9

is cancelled by = 3 through

15 6 9
E_amodm, or 5=2mod 3

However, if we avoid the zero divisors nfand consider only the those numbers (more exactly:
primitive residue classes)modn with gcd(a,n) = 1, then all divisions byheseelements can
be uniquely performed. For example, by @bdl2) =1

5x =10 mod 12 = X=2mod 12
These numbers actually constitute a multiplicative group of ogdaj:

Definition A.1 Forne N, n> 1, Euler’s ¢-functionor totient functionassigns tam the number
¢(n) of positive integer& < n relatively prime ton, i.e.

o(n) =#Z;, where  Z;={keN:k<nandgcdk,n)=1}. (43)

Zj, is the multiplicative group modula. For instance, the set of numbers less than 12 and
relatively prime to 12 ar¢1, 5, 7, 13, and thusp(12) = 4. An explicit formula denotes

o) =P g (- (-1 =[] (1) (44)
pin

if the prime factorization ofi is given byn= p*... p&. E.g., 12=22.3, and
1 1
p(12)=2-2= 12(1— 2) <1— 3) =4.

Theorem A.2 (Euler's Theorem) If gcd(m,n) = 1, then
m?™ = 1 modn. (45)
For a proof see, e.qg., [%4.1].

A.2 The Carmichael function and Carmichael’'s Theorem

Euler's Theorem can be strengthened. As we will see, this will yield an efficient determination
of key pairs of a RSA public key cryptosystem, much more efficient than the originally (and
yet nowadays in many textbooks) proposed procedure based on Euler's Theorem.
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Definition A.3 Forne N letn = []/_, p% be its prime factorisation. Then ti@armichaet
function is given byA (n) = lcm[A(p*)]i, where for each=1,...,r,

20i—2 if p=2ando; > 3,

p%(p—1) otherwise. (46)

Mo ={

Forn> 2, A(n) is even (sincey — 1 as an even integer dividdsn)); for n= 2, we have
simply 1(2) = ¢(2) = 1. Moreover, sincd.(n) is the least common multiple of factors @fn),
it divides the Euler totient function:

2| A(n) | @(n) forn> 2. (47)
Theorem A.4 (Carmichael’'s Theorem) If m,n € N andgcd(m,n) = 1, then
m*(™ = 1 modn. (48)
Moreover,A (n) is the smallest exponent with this property.

Using Carmichael's Theorem, we have a way of explicitly writing down the quotient of two
residue classes/b modn. The formula is

g =ab ! =ab* ™1 modn, if gcd(b,n) = 1, (49)

i.e.b 1 =b*"M-1modn.

Example A.5 Forn=65520=2*.3?.5. 7. 13, Euler's function assumes the valp) =
8:-6-4-6-12= 13824, whileA(n) =lcm(4, 6, 4, 6, 12)= 12. For allmwith gcd (m;n) = 1
we thus have

m'? =1 mod 65520

For eachmwith gcd(b,n) = 1 we havem~! = m*! mod 65520. For instance,

1
= 111 = 47651 mod 65520

Theorem A.6 If n € N is a product of distinct primes, i.e.=a []; pi, then

m W+ —mmodn  forallme Z. (50)
For a proof see, e.g., [8A2].

If the multiplicative grou;; = {m: 1< m,gcd(m,n) = 1} decomposes into the subgroups
Gi,
Z;:Glegx...ka, (51)

and ifd; is the order of the grou;, then each elemem € Z;, can be written in the form

m=glgZ---gx with1<e <d. (52)

1Robert D. Carmichael (1879 — 1967), U.S. mathematician
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Furthermore, for each
g% =1 modn, with di|A(n). (53)

For instanceZis = {1,2,4,7,8,11,13 14}. We see thatp(15) = 8 = #7Z;5. All possible
subgroupss; of Z1s are the following ones.

G1={1}, Go ={1,4}, Gz ={1,11}, G4 = {1,14},

Gs={1,2,4,8}, Gg={1,4,7,13}.
Henced; = 1,d; = d3 = ds = 2, andds = ds = 4. They all divideA (15) = 4.

Corollary A.7 Letbe em ne N, n> 1, and either n a product of distinct primes, ged(m, n) =
1. Thenforallee N

m® = me M4 modn. (54)
Lemma A.8 Forne N,
A(n)Sn-—1. (55)
Proof. Becausel(p) < p for every prime,A(n) < n as the least common multiple of the
Carmichael function values of the prime factorsof O
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WebLinks

1. http://math-it.org/mathematics . Learn more about RSA and number theory inter-
actively
2. hitp://www.rsasecurity.com/rsalabs/rsa _algorithm ' Homepage of RSA labs;

contains the latest RSA challenge numbers
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