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Abstract

It is demonstrated that the shadows of rotating charged black holes are well approx-
imated by D̈urer-Pascal limaçons. This is done by comparing plots of the shadows as
derived by closed photon orbits [4] to the limaçons.
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1 Introduction

Although a black hole is not visible, it may be observable nonetheless — it casts a shadow
if it is in front of a bright background. In the early 1970’s Bardeen [1] was the first to
study the apparent shape of an extremely rotating black hole, later Luminet [12] visualized
a Schwarzschild black hole with an accretion disc around it. In the 1990’s Quien, Wehrse
and Kindl [14] plotted accretion discs around an extremely rotating black hole as viewed
from different angles of latitude. Supplementing these numerical approaches, the author [4]
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studied analytically the closed photon orbits in general Kerr-Newman space-times, even in
cases where the so-called cosmic censorship is violated.

The observability of black hole shadows in the near future is very realistic. Recently,
great interest emerged especially for the observability of the black hole in the center of our
Milky Way, Sgr A* [2, 5, 8, 10].

The present article is focussed on an introduction of the optics of black hole and a com-
fortable representation of shadow shapes. It results in the discovery that the shadows are well
approximated by D̈urer-Pascal limaçons. These plane algebraic curves are an interesting is-
sue on their own, being first mentioned by Albrecht Dürer and later reinvented býEtienne
Pascal.

The article proceeds as follows. In section 3 a concise overview of the basic principles
and the theory concerning shadows of charged rotating black holes is given. Section 4 yields
a short introduction to the mathematics of limaçon curves, before limaçons as approxima-
tions of rotating black hole shadows are studied in section 5. A short discussion concludes
the paper.

2 Motivation

What is a black hole? It is commonly known that a black hole is a mass being concentrated
to such a small space region that its space-time curvature, or its gravity, is strong enough
to even capture light, not to mention massive particles. Although German astronomer Karl
Schwarzschild discovered this space-time as an exact solution of the field equations of Ein-
stein’s —then only a few months old— general relativity, their physical relevance was only
recognized decades later. It was John A. Wheeler, a student of Albert Einstein, who intro-
duced the name “black hole”.

In 1963 Roy Kerr discovered the solution of a rotating mass, which is considerably more
complicated, and it could be generalized to a rotating charged solution a few years later by
Ted Newman and his coworkers. This solution represents, besides even more general mass
fields, especially the most general black hole. It was a long and hard mathematical work
to prove the so-called uniqueness theorem of the Kerr-Newman solution, done by several
theoretical physicists from 1967 to 1982 (Israel, Carter, Hawking, Robinson, Mazur). It
states that the only stationary and ‘asymptotically flat’ solution of the Einstein equations
is the Kerr-Newman solution (see [9] for details and further references). In particular, this
means thatanyblack hole is characterizedonly by the three parametersmass, rotation, and
electrical charge — regardless of the original structure of the matter having been ‘swallowed’
by the black hole.

This remarkable property is often referred to as the ‘no-hair’ theorem and gave rise to an
important theoretical controversy whether the information about physical quantities of matter
vanishing in the black hole is completely lost. If this was true, the energy conservation would
be violated eventually and the universe would heat up. This is the ‘information paradox’, and
the only known ansatz to solve it is by superstring theory providing a fundamental derivation
of black hole entropy [11, 15, 16].
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Another interesting consequence of the no-hair property is that the outline of the shadow
casted by a black hole is determined only by its three parameters and the relative position of
the observer. Each parameter constellation has its own characteristic shape, astronomers can
observe the rotation and charge relative to the mass optically. A systematic study of black
hole shadows [4] was first presented in 2000.

When I computed the apparent black hole shadow outlines, I was amazed at their simi-
larity to limaçons, special algebraic curves. I tried to investigate whether there is a deeper
relationship between them. However, I did not find one, unless the fact that the similarities
are rather strong in a wide range of the parameters. In this paper I will shortly present this
property and by the way introduce into the interesting subject of limaçons as well as into the
optics of black holes.

3 The shadow of a black hole

To compute the shapes of black hole shadows, we first have to study light rays in general
relativity. In the following section, we therefore consider geometrical optics in curved space-
times.

3.1 Geometrical optics

The key idea to compute the apparent shape of a general black hole relies on geometrical
optics, where an electromagnetic wave propagates approximately on a congruence of light
rays perpendicular to the wave fronts. According to general relativity, light rays are bended
lines in a space-time curved by existing masses.

However, the geometric optics approximation is valid only if the wavelengthλ is small as
compared to the typical radius of curvature in the considered space-time region. For a black
hole the radius of curvature,R, is given by the reciprocal value of the typical component of
the Riemann tensor,

R≈

√
r3

r+
, (1)

wherer is the distance from the black hole center, andr+ is the event horizon of the black
hole [3, 4].

E.g., for a black hole of solar mass the event radiusr+ is about 1.5 km, i.e., the radius
of curvatureR≈ 1.5–2 km in the close neighborhood of the event horizon. Therefore, for a
black hole of solar mass and for a medium wave radiation (withλ between 100 m and 1 km)
originated close to its event horizon geometrical optics is not an admissible approximation,
but for very high frequency it does, a fortiori for even shorter waves like infrared waves,
light, or x-rays.

For the center of the milky way galaxy, presumably a giant black hole of about 2.6 million
solar masses, the radius of curvature is about 4 million km, i.e., the error of a measurement
of a long wave source (λ ≈ 10km) close to the event horizon is about 1:400 000.
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If we put up with inaccuracy of geometric optics, we get aware of the world around
us as an optical illusion. Since the light rays reaching an observer in infinity are curved,
they appear to come from a totally different direction. To represent the apparent source

(  ,   )x y

θ

y

x

light ray

apparent position

black hole

light source

Figure 1:The(x,y) coordinates, indicating the apparent position of a light ray with respect to the observer’s
projection plane containing the center of the space-time:x denotes the apparent distance from the rotation axis,
andy the projection of the rotation axis itself (dashed line).θ denotes the angle of latitude (reaching from the
north pole atθ = 0 to the south pole atθ = π).

location with respect to the projection plane of the observer the(x,y) coordinates are used,
as explained in Fig. 1.

3.2 Closed photon orbits

Further analysis of the light rays in a general Kerr-Newman space-time with a singularity
shows the existence of photons which move on closed orbits [1, 3, 4]. They describe the
limit of the innermost photon orbits coming from infinity and escaping back to infinity. (Here
“infinity” means the asymptotically flat space-time region far away from the black hole; yet
already at a distance of 25 times the event radius, 25r+, the radius of curvature according to
(1) isR≈ 125r+, so the asymptotically flat regions are reached rather quickly.)

Thus for an observer at infinity, who sees the black hole in front of an illuminated back-
ground in the asymptotic flat region, the black hole casts a shadow which in the approxima-
tion of geometrical optics is given by the set of its closed photon orbits.

According to [4] the nonlinear system of differential equations governing closed photon
orbits can be reduced to a gradient system with a potential function being a polynomial
F(r) of degree 5 with respect to the radial photonic distancer. A necessary condition for a
closed orbit withr = rc, with rc a constant, then is simply the vanishing of the first derivative
of the potential function,∂F(rc)/∂ r = 0. Remarkably, in a Kerr-Newman space-time any
closed photon orbitimplies that the second derivative of the potential functions vanishes,
∂F2/∂ r2 = 0.1 Therefore, any closed photon orbit in a Kerr-Newman space-time is unstable.
Mathematically, such a closed orbit corresponds to exactly one point in the bifurcation set of
the potential functionF , which is the so-called swallow tail [4].

1This fact is mentioned in [1, 3], but it seems be proved presumably at first in [4,§3.1].
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Let us consider a Kerr-Newman space-time with massM (in kg), angular momentum
J (in kg m2 s−1), and electrical chargeq (in kg1/2 m3/2 s−1). Then the related geometrized
parametersM, a, andQ specifying the space-time are

M =
GM

c2 , a =
J

cM
, Q =

√
Gq

c
. (2)

Algebraically, a photon moving on a closed orbit with radiusr in a Kerr-Newman space-time
with a 6= 0 has the apparent position in the(x,y) reference frame of an asymptotic observer
located in the angle of latitudeθ (cf. Fig. 1) given by

x =
r∆+ rQ2−M(r2−a2)

a(r−M)sinθ
, (3)

y2 =
4r2∆

(r−M)2 − (x+asinθ)2. (4)

where∆ = r2−2Mr + a2 + Q2. Cf. [4, Eqs. (51, 65, 69)2]; for the Kerr case (Q = 0) see
also [3,§63 Eqs. (224, 225, 241)]. For the non-rotating casea = 0, the(x,y)-position is
determined by the circle equation

x2 +y2 =
r4

∆
, with r = 3

2 M

(
1+

√
1− 8Q2

9M2

)
. (5)

As long as the parameters are chosen such that the space-time satisfies the “cosmic censor-
ship hypothesis” [13], prohibiting naked singularities, viz.M2 = a2+Q2 [6], these formulas
yield well-defined closed curves on the celestial sphere of the asymptotic observer ([4, Fig. 2]
or Fig. 5 below).

The variablex in Eq. (3), considered as a function ofr, is monotone increasing with
respect tor in the regionr > M. It thus can be inverted. Since the nominator of the right
hand side of Eq. (3) is a cubic polynomial inr, we achieve by the Cardano formula

r = M +
3
√

q+
√

p3 +q2 +
3
√

q−
√

p3 +q2 (6)

where
q = M(M2−a2−Q2), p =−1

3 (axsinθ +3M2−a2−2Q2). (7)

Note thatq is a constant with respect tox, andp = p(x).

4 Dürer-Pascal limaçon

The Dürer-Pascal limaçon, or shortly Pascal’s limaçon, is a plane curve generated by the
locus of points which in polar coordinates(r,ϕ) satisfy the equation

r = Acosϕ +B, (8)

2 with x replaced byα, andy by β .
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with 0 5 ϕ < 2π, andA, B = 0 (Fig. 2). Geometrically, a point of the limaçon is on a line at
a fixed distanceB from the point of intersection of the line with a fixed circle of radiusA/2,
as the line revolves about a point on the circumference of the circle. Since the equation of

y

x

U

O
V

W

Figure 2: Dürer-Pascal limaçon for 2A 5 B. The radius of the auxiliary circle (light line) isA/2, and the
identitiesVW = UV = B hold.

the circle is given by(x− A
2)2 + y2 = A2

4 , i.e. in polar coordinates,r = Acosϕ, the limaçon
is also called the conchoid of the circle.

Depending on the values ofA andB, the form of the limaçon differs (Fig. 3). For 2A 5 B

Figure 3:Dürer-Pascal limaçon forA < B < 2A (left hand side) and forA > B (right hand side).

it is a convex curve, forB= A it is a cardioid, and forA> B> 0 it has a singular point where
it intersects itself. Some special cases are listed in the table:

Condition Limaçon
A = 0 < B circle of radiusB
A = B > 0 cardioid
A > 0 = B circle of radiusA/2

The areaA of a limaçon with parametersA andB is given by

A =
π

2

(
A2 +2B2) . (9)

(For the caseA > B, the inner loop then is computed double.) Written in Cartesian coordi-
nates(x,y), the limaçon equation (8) reads

(x2 +y2−Ax)2−B2(x2 +y2) = 0. (10)
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Figure 4:The limaçon (black curve) with the parametersA = 2.50 andB = 4.6, in comparison to the shadow
of a black hole with (extreme) rotation parametera= M (light curve) in the reference frame(x,y) of an asymp-
totic observer in the equatorial planeθ = π

2 , according to Fig. 1. The unit length is the (geometrized) black
hole massM.

Thus the limaçon is an algebraic curve of 4th order with genusg = 2 for 2A > B, or genus
g = 3 for the convex case 2A 5 B.

The limaçon is named afteŕEtienne Pascal (1588–1651), father of Blaise Pascal, though
Albrecht Dürer (1471–1528) had already published the curve in 1525 [7, Fig. 40]; he called
it Spinnenlinie(“spider curve”), due to his special manner of construction [L2].

5 Black hole shadows and limaçons

Regarding the shadow forms of rotating black holes, the border of which is determined by
equations (3) and (4), one finds a striking similarity with Dürer-Pascal limaçons. Although
a closer analysis shows that the shadows arenot exact limaçons, it is worthwile to consider
which limaçon parameters fit to the shadows of some black hole with given rotation param-
etera, as is listed the table:

a .0 .1 .2 .3 .4 .5 .6 .7 .8 .866 .9 .95 .98 .99 .999 1.0
A .0 .21 .40 .61 .82 1.01 1.24 1.48 1.71 1.90 2.01 2.17 2.30 2.38 2.47 2.50
B
√

27 5.19 5.18 5.16 5.14 5.11 5.07 5.02 4.93 4.86 4.82 4.74 4.68 4.65 4.62 4.60
(11)

Remarkably, the inaccuracy increases for increasing rotation. For illustrative purposes, the
case of an extremely rotating (uncharged) black hole witha = M (andQ = 0) is shown in
Fig. 4. The differences between the shadow border curve and the limaçon are distinct, though
they are relatively small. Since the shadow curve itself, being derived from geometrical
optics, is an approximation, it may also be considered as a limaçon.

Various black hole shadows, as seen by an observer in the equatorial plane far away from
the black hole, are shown in Fig. 5. Here also shadows of electrically charged black holes
are plotted. It is remarkable, that the shadows of any black hole observed in their equatorial
planes is well approximated by a limaçon.

An observer of a black hole, however, is rarely located exactly in the equatorial plane
of the black hole. Thus a general formula describing the shadow curve with respect to the
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Figure 5: Limaçons (black lines) in comparison to black hole shadows (light lines) of various rotationa
and electrical chargeQ in the reference frame(x,y) of an asymptotic observer in the equatorial planeθ = π

2 ,
according to Fig. 1. The unit length is the (geometrized) massM.
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Figure 6:Quater-round trips around various uncharged black holes, starting at the north pole direction (θ = 0)
and ending in the equatorial plane (θ = π

2 ) (the other quarters are symmetric to this). Shown are the limaçons
(black lines) in comparison to outlines black hole shadows (light lines) of various rotation parametersa, again
in the reference frame(x,y) of the asymptotic observer in the actualθ -plane, according to Fig. 1. The unit
length isM.

latitude θ has to be given. Since the curve in the(x,y) reference frame of the observer
determined by Equ. (3) and (4), due to the circular orbits of the space-time, are explicitly
depending on the latitudeθ —with the remarkable exception of the polesθ = 0 andθ = π—
the idea is obvious to investigate whether the apparent shadow curves as seen at varying
latitudesθ could also be approximated by limaçons. And in fact they can. A rough inspection
for the uncharged casesQ = 0 shows that they are rather well approximated by a limaçon
(8), where the paramtersA andB are given by the following simple Fourier series,

Aa(θ) = Aasinθ + .2asin3
θ cos2θ , (12)

Ba(θ) = Ba + .23M

(
1−
√

1− a4

M4

)
cos4θ , (13)

with A0 andB0 being the linearly interpolations of the respective values in Table (11). In
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Fig. 6 the various apparent shadows as viewed from different latitudes are plotted, for a
moderately rotating black hole (a = .50) and two extremely rotating ones (a = .99 anda =
1.0). Each row in the figure can be imagined as the first quarter of a round trip around the
black hole, starting at the north pole direction (θ = 0) and ending at the equatorial plane
(θ = π

2 ).

6 Discussion

This article showed the approximation of rotating black hole shadows by Dürer-Pascal lima-
çons, showing plots of various shadows and their adapted limaçon. Moreover it analyzed the
conditions under which black hole shadows are observable.

What are the potential advantages of limaçons as representations of black hole shadows?
First, limaçons are much easier to describe than the complicated curves determined by Equa-
tions (3) and (4). Instead of these equations, for the chargeless casesQ = 0 only Table (11)
and the latitude-depending relations (12) and (13) determining the limaçon parametersA and
B has to be regarded. One benefit is that the limaçons describe the shadow for observers near
the pole directions,θ = 0 or θ = π, contrary to (3) and (4).

Second, the computation of the area now is an easy task by Equation (9). This may be im-
portant when computing intensity or luminosity differences due to absorption of background
radiation.

It is true, the black hole shadows definitely are no limaçons, except in the spherically
symmetric Schwarzschild case, where it is a circle. Their similarities are remarkable, though.
Future work should investigate the properties of the shadow outlines as plane algebraic
curves. Perhaps this will give further insight into the symmetry-breaking effect of rotation
in general relativity.
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